https://exploitreversing.com

Malware Analysis Series (MAS):
Article 1

by Alexandre Borges
date: DEC/03/2021 - revision: A.1

1. Introduction

Welcome to the MAS (Malware Analysis Series). Being very honest, in the last four years it was a quite
difficult stopping my research job for writing an article as well as would have impossible writing a series of
articles, but | think it’s feasible now and let’s try it. Just to give an example, last time | wrote a superficial
article was in 2017 and, certainly, | didn’t even remember until a colleague talked about it recently.

The goal is to produce a series of articles on malware analysis and explain since simple malware binaries up
to most complex ones, covering a large list of topics such as unpacking, API resolving, C2 extraction, C2
emulation and, of course, reverse engineering in addition to some dynamic analysis and, maybe, use few
de-obfuscation techniques. When it’s necessary, I'll cover other topics such as COM (Component Object
Model), cryptography, IDC/IDA Python and everything it necessary to help readers to have a better
comprehension of analysis.

Furthermore, | will also write short articles covering topics such as malicious documents (on this time I've
already release one: https://exploitreversing.com/2021/11/02/malicious-document-analysis-example-1/),
programming, de-obfuscation, operating system internals and so on. Nonetheless, the main focus will be
MAS (Malware Analysis Series).

As malware analysis produces extensive articles, so I'll break them up in parts 1, 2, and so on, when it will
be necessary.

Every article will be published on my new blog (using a different font) and, at beginning of each post,
there will be a PDF version of that article.

During this series of articles, I’'m going to use several tools and try to point where you can get them to
make things simpler for you.

| am not going to propose only hard samples because, in my humble opinion, this kind of approach
wouldn’t help anyone (mainly professionals that aim to learn to something) and, at end, it would be only a
waste of time (and an useless show-off). Therefore, we’ll analyze different samples, each one with a
distinguished level of difficulty, and discuss some lines of code. As | mentioned previously, the strategy is to
break up an article in different parts if it’s necessary to avoid turning the reading so exhausting.

2. Lab Setup

Explaining about the lab setup, | usually analyze all samples using one or more of the following systems:

1|Page

https://exploitreversing.com/2021/11/02/malicious-document-analysis-example-1/

https://exploitreversing.com

= Windows 7, Windows 8.1 or Windows 10: If you need a Windows 10 virtual machine, Microsoft
continue offering one with expiration time on this website: https://developer.microsoft.com/en-
us/windows/downloads/virtual-machines/

= REMnux (best distribution for reverse engineering): https://docs.remnux.org/install-distro/get-
virtual-appliance

= Ubuntu 20.04.x: https://ubuntu.com/download/desktop

Ill try to avoid using any non-sense techniques and focus on well-known tools. Unfortunately, few of them
are not free (like IDA Pro, which is my favorite one, by far and, in my opinion, the best reversing tool
around the world since ever), but Hex-Rays offers the IDA Free and an affordable paid version named IDA
Home:

= IDA Free: https://hex-rays.com/blog/announcing-version-7-6-for-ida-freeware/
= IDA Home: https://hex-rays.com/ida-pro/#main-differences-between-ida-editions

No doubts, you can use Ghidra to disassemble, decompile and debug any code just in case you’re more
comfortable with it: https://github.com/NationalSecurityAgency/ghidra/releases

You'll need a good debugger and certainly the best one is x64dbg/x32dbg, which you can download from
the following website:

= x64dbg: https://x64dbg.com/#start

Additionally, there’re tons of x64dbg plugins that could be installed to extend x64dbg/x32dbg functionality
and are quite recommended during dynamic analysis (mainly to avoid anti-debugging techniques used by
malware), so few of them that you could like to install are shown below:

= ScyllaHide: it’s an advanced anti-debug library that hooks several functions to hide the debugging
activity from malware: https://github.com/x64dbg/ScyllaHide/releases

= Labeless: it’s a quite recommended plugin that provides two key-features for reversers:

= Label, function name, global variable and comment synchronization between x64dbg and
IDA Pro.

= Dynamic dumping of regions from memory for a debugged process, which will be useful, for
example, for dumping the binary after its task API resolving and/or string decoding.

= Labeless plugin can be downloaded from: https://github.com/alext/labeless/releases

= DbgChild: it provides an automatic detection of child processes created by the debugged process
and automatically attaches a new instance of x64dbg to if the the main process forks a new
process, so saving your time in many opportunities. DbgChild is available from:
https://github.com/David-Reguera-Garcia-Dreg/DbgChild

Other useful plugins exist, but let’s wait for the appropriate moment to talk about them. On time: many
available plugins don’t have been regularly kept by their authors and maintainers, so they could not work
anytime. Be careful!

2|Page

https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/
https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/
https://docs.remnux.org/install-distro/get-virtual-appliance
https://docs.remnux.org/install-distro/get-virtual-appliance
https://ubuntu.com/download/desktop
https://hex-rays.com/blog/announcing-version-7-6-for-ida-freeware/
https://hex-rays.com/ida-pro/#main-differences-between-ida-editions
https://github.com/NationalSecurityAgency/ghidra/releases
https://x64dbg.com/#start
https://github.com/x64dbg/ScyllaHide/releases
https://github.com/a1ext/labeless/releases
https://github.com/David-Reguera-Garcia-Dreg/DbgChild

https://exploitreversing.com

All remaining tools will be shown during our analysis and many future articles.

Last, but not least, this article (and all the following ones) certainly will have mistakes that will be fixed and
I'll release new PDF versions reflecting all fixes.

3. Malware analysis goals
No doubts, It’s an interesting point: what are we looking for while analyzing a binary?

The question is relevant because there’re many possible objectives and aspects to be regarded while
analyzing a malware. Nonetheless, during a real-world investigation, there are other important areas as
malware analysis and, of course, we should consider them in all moments of our analysis:

a. Memory Analysis: it’s an extremely powerful technique, which has proved its unlimited value in the
last 10 years and used as a first-approach method during investigations to understand the malware
infection events, its consequences, side effects and makes possible to acquire tons of evidences
that might be hard to collect from disk or any other source.

b. Network Analysis: it is a quite useful resource (pcap files, for example) to understand and detect
non-authorized communication (C2 — command and control channel) through traffic analysis and
makes artifact gathering (for example, binary files, malicious documents and Cobalt Strike beacons).

c. Filesystem/Disk Analysis: the last frontier of any investigation, where we can analyze and detect
side effects of a adversary invasion, breaches, frauds, leaks and, of course, malware infections.

Once again, all of them are very important and must be used in all real world investigation. However, let’s
return to the key point: why should you learn about reverse engineering and, in special, malware analysis?
Simple: through malware analysis you have the opportunity to learn from the source of the evil about
intentions and objectives of the the adversary and not only its effects. In other words, you can learn
techniques, tricks, evasion strategies and, if you’re lucky, you’ll can collect important artifacts to make the
correct attribution (most of the time, it’s a hard task) and, who knows, help to arrest the bad guys.

Therefore, before starting any reversing task, we should remember that there’re many questions that we
should to consider and ask to ourselves:

= |s the binary packed? If it’s, so malware is using a well-known packer or a custom one?

= What’s the networking communication technique/API set being used by malware? From available
techniques such as Winsock2, Wininet, COM (Component Object Model) or something in a lower
level such as WSK (Winsock Kernel) or even custom implemented technique, which is being used?

= |sthere any code injection or hooking technique being used? Which one?

= What are the anti-forensic techniques used? Is there any anti-debugging technique? Anti-
disassembly? Anti-VM/Sandbox?

= |sthere any API/DLL encoding?

= Are strings encrypted?

= What synchronization primitives are being used by the malware? Sometimes they hide important
anti-debugging techniques.

3|Page

https://exploitreversing.com

What are cryptography algorithms being used by the malware?

What persistence methods are being used by the threat: Registry, services, tasks or kernel drivers?
= |sthere any shellcode being injected into a operating system process?

= |s there any file system mini-filter driver being installed by malware?

If there’s a kernel drivers being installed, is there any callback (a kind of modern hook) or timer
being installed?

In this first article, we’ll focus on only two short objectives:

a. unpacking the malware
b. extracting and decrypting its C2’s configuration data

We're reviewing some well-known techniques for unpacking malware threats as well as different methods
to extract C2’s configuration data. Furthermore, | am going to provide a minimum background for some
basic topics to help readers to be able to continue their own research about the mentioned topics.

4. Gathering initial information

The first sample has the following hash:
(SHA256) 8ff43b6ddf6243bd5ee073f9987920fa223809f589d151d7e438fd8cc08ce292

We're able to collect so much information from many endpoints such as Malware Bazaar, as shown in the
figure below:

remnux@remnux:~/malware/mas$ malwoverview.py -b 1 -B 8ff43b6ddf6243bd5eed73f9987920fa223809f589d151d7e438fd8ccb8ce292 -0 0

MALWARE BAZAAR REPORT

sha256_hash: 8ff43b6ddf6243bd5ee07319987920Ta2238097589d151d7e438Td8ccB8ce292

shal_hash: f8fbl264a292aech6c2bf5c5d4f3el199e3a822ad
md5_hash: 4198acldc34de77ab8ceac3c9a25480e

first_seen: 2021-16-19 14:58:22

last_seen: 2021-16-19 15:01:32

file_name: gelfor.dap.dll

file_size: 538112 bytes

file_type: dll

mime_type: application/x-dosexec

country: us

imphash: 81bbf124b97b7484333ed4ffba3d7e94

tlsh: T1D2B47D313580D032D02B743EDE64D1F8579A7C26DE686D4ABT73C82F6FAA2ASC1CE2571A
reporter: James_inthe_box

delivery: other

tags: dll Hancitor

Cape: https://www.capesandbox.com/analysis/198600/
UnpacMe:

https://www.unpac.me/results/dbe78747-733f-42cbh-a267-a363eabcf26b/

Triage: https://tria.ge/reports/211019-scqzxsghgr/

Triage sigs:
Hancitor
suricata: ET MALWARE Tordal/Hancitor/Chanitor Checkin
Blocklisted process makes network request
Looks up external IP address via web service
Suspicious behavior: EnumeratesProcesses
Suspicious use of WriteProcessMemory

[Figure 1]

According to the Figure 1, we have some important information:

4|Page

https://exploitreversing.com

= The target malware seems to be from Hancitor family.

= |t uses EnumerateProcesses() function, so it could be interesting to understand whether any
special reason for that (code injection, for example);

= WriteProcessMemory() is triggered as usually we have seen in unpacking procedures and code
injection, so no news is a good news here.

Extending our data acquisition, we can check the sample on Triage for collecting further information:

remnux@remnux:~/malware/mas$ malwoverview.py -x 1 -X 8ff43b6ddf6243bd5ee073f9987920fa223809f589d151d7e438fd8ccO8ce292 -0 @

TRIAGE OVERVIEW REPORT

id: 2116027-g45laaehd2
status: reported
kind: file

filename: 8ff43b6ddf6243bd5ee073f9987920fa223809f589d151d7e438fd8ccO8ce292
submitted: 2021-10-27T13:49:52Z
completed: 2021-10-27T13:52:43Z

id: 211019-scqzxsghgr
status: reported
kind: file

filename: gelfor.dap.dll
submitted: 2021-10-19T14:59:05Z
completed: 20621-10-19T15:01:43Z

[Figure 2]

There’re other tasks id related to this sample, but let’s to focus on the first one only. Details about the first
task id can be shown by executing the following command (the output was truncated):

remnux@remnux:~/malware/mas$ malwoverview.py -x 2 -X 211027-q45laaehd2 -0 ©

TRIAGE SEARCH REPORT

score: 10
extracted:
botnet: 1910_nsw
c2:
http://newnucapi.com/8/forum.php
http://gintlyba.ru/8/forum.php
http://stralonz.ru/8/forum.php
family: hancitor
rule: Hancitor

dumped: memory/1648-57-0x0000000074940000-0x0000000074948000-memory .dmp
resource: behaviorall/memory/1648-57-0x0000000074940000-0x0000000074948000-memory.dmp
tasks: behaviorall behavioral2

[Figure 3]

Of course, we could obtain additional information about the sample, but it’s enough for now because we
already have possible C2 (URLs).

Our next step is to find out whether this sample is packed (as most of the malware threats) or not.
Furthermore, if it’s packed, so we will learn how to unpack it using a debugger like x64dbg.

Nonetheless, let’s review few concepts about unpacking malware on Windows systems.

5|Page

https://exploitreversing.com

5. Unpacking Concepts Review

Every single time I've heard someone talking about unpacking it seems impressions convert to the same
conclusion: it might be not so easy. Of course, as we mentioned previously, unpacking a sample is likely
the first step before possible string decryption and API/DLL resolving, for example, but we need to start
from somewhere and with a goal.

There’s a long list of reasons and aspects associated to motivations about packing a malicious code:

= |t makes the malicious code “hidden” from AV. Of course, it isn’t so hidden, but it’s a soft evasion
technique that make analyst’s life a bit harder and, eventually, cause some problems to defenses.

= Packed sample doesn’t reveal the actual goals of the actual malware.

= |t could be difficult unpacking it dynamically due many anti-analysis techniques (anti-debugger
and anti-vm tricks) to be circumvented.

= Malware usually packs valuable code in several layers using customized routines.

= Eventually, the whole malware or only the unpacking code might be polymorphic.

There are a lot of old well-known packers which we have procedures to unpack the code generated hidden
by them, but most of malware authors have been used customized packers to turn code undetectable
under security defenses monitoring. Additionally, there are some special packers (as known as protector)
such as Themida, Arxan, VMProtect, Agile .NET and many others that usually virtualize their instructions
and implement all kind of anti-forensic and obfuscation techniques, where few of characteristics are
presented below:

= They have been used on 64-bit binaries.

= The IAT (Import Address Table) might have been removed or, at maximum, there could be only
one imported function.

= As usual, most strings are encrypted.

= Memory integrity is checked and protected, so it isn’t possible to dump a clean executable from
memory because original instructions are not completely decoded there.

= |nstructions are virtualized and, surprisingly, translated to RISC instructions.

= These virtualized instructions are encrypted on memory.

= The obfuscation is stack-based, so it quite difficult to handle virtualized code using static approach.

= Most of virtualized code is polymorphic, so there are many virtual instructions referring to the
same original instruction.

= There’re thousand lines of fake “push” instructions and, of course, many of them contains dead
and useless code.

= These protectors implement code reordering using unconditional jumps.

= All these modern packers use code flattening, many anti-debugging and anti-vm techniques.

= Not all x64 instructions are virtualized, so you will find a binary code containing a mix of virtualized
and not virtualized (native) instructions.

= Most of time, prologues and epilogues of functions are not virtualized.

= QOriginal code section could be “splitted” and/or scattered around the program, so instructions
and data would be mixed.

= |nstructions referring to imported function might be zeroed or even replaced by NOP, so in this
case these “references” will be restored dynamically. Sometimes these same references aren’t

6|Page

https://exploitreversing.com

zeroed, but replaced by jump instructions using RVA to the same import address, as well known as
“IAT obfuscation”.

As used in shellcodes and common malware, APl names are hashed.

The translation from native register to virtualized register is usually one-to-one, but not always.
Furthermore, there is a context switch component that is responsible for transferring registers and
flag information into the virtual machine context.

Virtual machines handlers come from data blocks.

Many native APIs are redirected to stub code that forwards the call.

Obfuscation techniques such as constant unfolding, pattern-based obfuscation, control
indirection, inline functions, code duplication and mainly opaque predicate are used.

Before and during the unpacking task, there’re many observations and questions that we could think

about:

Is the malware really packed?

What are the evidences of having a packed code?

Does the malware perform self-injection or remote injection?

Does the malware perform self-overwriting?

Where is the payload being written?

How the payload is going to be executed?

What are evidenced of having an unpacked code after the unpacking procedure?
Are there additional packed layers?

The first point of the list above rises a key question: how do we know whether a malware is really
packed?

There isn’t an easy and definitive answer to this question, but eventually a set of two or more evidences
could indicate that sample is packed:

The binary sample has few imported DLLs and functions.

There are many obfuscated strings.

Existence of specific system calls.

Non-standard section names.

Non-common executable binary sections (only .text/.code section should be executable)
Unexpected writable sections.

High entropy sections (usually above 7.0, but not always — this is a weak indicator).

Substantial difference between the raw size and the virtual size of a section.

Zero-sized sections.

Missing APIs related to network communication.

Lack of essential APIs for the malware functionalities (Crypt* functions in a ransomware, for
example).

Unusual file format and headers.

Entry-point pointing to other section than .text/.code section.

Significant size of resource section (.rsrc section) followed by LoadResource() function in the code.
Presence of an overlay.

Opening it up on IDA Pro and observing a big amount of data or unexplored code on colored bar.

7|Page

https://exploitreversing.com

It’s very relevant and suitable to highlight one point: the occurrence of only one characteristic from the
list above doesn’t determine that the malware is packed. Thus, it’s quite important to consider two or
more of them. Furthermore, there are further observations to be considered:

Most samples resolve dynamically their APIs using LoadLibrary() followed by GetProcAddress(),
for example (except on reflective code injection cases).

Network APIs also could be dynamically resolved.

Malformed headers might be a bit difficult to detect at the first analysis.

Big resource section might not be relevant because it might contain only GUI artifacts and digital
certificates.

There might be a mix of encrypted/obfuscated strings and plain text strings, so making a bit
harder to decide whether the binary is or not packed.

The unpacking procedure using a debugger might bring a list of challenges to be understood and
bypassed:

Anti-debugging techniques (time checking, CPUID, heap checking, debugging flag checking,
NtSetinformationThread(), and so on), so it's recommended to use an anti-debugger plugin such
as ScyllaHide (https://github.com/x64dbg/ScyllaHide) on x64dbg/x32dbg or even StrongOD on
OllyDbg (there’re some repositories containing OllyDbg and all associated useful plugins already
built-in. Use Google for finding them).

Anti-VM tricks checking for VMware, VirtualBox, Hyper-V and Qemu artifacts, for example.
Filename, hostname and account checking (avoid using the hash as filename).

Available disk size on virtual machine (it's recommended 100 GB, at least)

Number of processors on the testing virtual machine (two or more would be suitable)

Uptime (try to keep a virtual machine snapshot with uptime above 20 minutes).

Many non-sense calls (result is not used any longer) and non-existing APIs (fake APIs).
Exception handlers being used as anti-debugging technique.

Software breakpoints being cleared and registers (DR#) being manipulated (anti-breakpoint
techniques)

Hash functions using typical algorithms (for example, crc32, conti, add_ror13,...) being used.
Malicious code checking for well-known tools such Process Hacker, Process Explorer, Process
Monitor and so on (it’s recommended to rename these executable binaries before using them).

Unfortunately, anti-VM tricks and anti-debugger techniques cannot be always handled by plugins and we
will have to manage to bypass them using the debugger. In this case, we have an interesting possibility of
using a different debugger like WinDbg to manage some malware threats expecting for ring 3 debuggers
only and not kernel debuggers (a recent case is the GuLoader malware).

Even during or after unpacking procedures, we could need to fix the resulting binary because one or more
of following issues:

The DOS/PE header could have been destroyed on the memory or modified by a compress library.

In many cases, when you extract a binary from memory, you need to clean it up because there’s
some garbage before its DOS header (MZ signature) and PE header.

8|Page

https://github.com/x64dbg/ScyllaHide

https://exploitreversing.com

The entry-point (EP) could have been zeroed or wrong.

The unpacked binary might have its Import table destroyed due to the fact it has been dumped and
its address refers to virtual addresses (mapped version instead of unmapped version), so showing
unaligned sections or none section.

Base address is wrong.
PE format’s field presents some inconsistence.

It could be hard to determine the OEP (Original Entry Point) , which usually appears after a
transition from unpacker code using an indirect call (call [eax] or jmp [eax], for example).
Additionally, existence of non-resolved APIs could be an evidence of the malicious code hasn’t
reached the OEP yet. On time: OEP is the entry point (EP) of an executable before it being
packed. After it has been packed, a new EP is associated to packer itself.

Mutexes being used as a kind of “unlock key” between two unpacking layers. In this case, the
second stage of unpacking doesn’t happen without the first stage has happened, and if it’s
happened, so the mutex existence is confirmed.

The code might be executing self-overwriting.

The first stage of unpacked code doesn’t run from any directory, but only from a specific one.
You can have extracted a decoy binary. In many real cases, malware authors packs one or more

useless executables as decoy to consume time of the analyst. Thus, it would be wise not believe
you’ve unpacked the correct binary from memory at first attempt.

This list of issues is very limited and there’re endless other possible side effects on unpacked binaries. Of
course, distinct solutions for each one of these presented issues exist and they will be explained and given
examples in the next articles of this series. Anyway, few approaches for handling some issues are:

Copy a good PE header from another executable (or from the own malware sample) and align
sections considering whether the unpacked binary is unmapped (.text section usually starts on
0x400) or mapped (.text section usually starts on 0x1000).

Align sections of an unpacked binary (mapped addressing) by fixing its respective Raw Address
and Raw size. This action usually fixes the Import Table and makes possible to visualize imported
functions without any issues. Pay attention to possible “traps”: some unpacked binaries don’t
show its Import Table until you’ve aligned their sections. However, other malware threats don’t
have any function in the Import Table even after you having unpacked the binary, so it doesn’t
mean you made any mistake, but it does that the malware resolve all its APIs dynamically.

Reconstruct the IAT and forcing the OEP (Original Entry Point).

9|Page

https://exploitreversing.com

If you’re facing problems in finding the OEP, so remember that OEP likely comes after the IAT has
been resolved. In this case, one of possible approaches would be to check whether IAT is already
resolved (check for Intermodular Calls on x64dbg or OllyDbg) or setting a breakpoint on a critical
API that would be executed during a key operation of malware (CryptoAcquireContext() in
ransomware threats, for example) because certainly IAT will be resolved when execution reaches
these critical APIs . Afterwards, the suggestion is looking for unconditional jumps to specific
memory addresses or even indirect calls (call [eax], for example). Another interesting approach
would be using the graphical visualization of a debugger (“g” on x64dbg) and check for these
transition points (indirect calls or unconditional jumps for memory addresses) at the last “code
blocks”. Finally, a specialized tool might help you to find out the OEP. As you’ve noticed, there isn’t
a single approach to do this.

Adjust the base address to match with the segment’s base address dumped from memory.

To detect malware performing self-overwriting, we could try to set a breakpoint on the
.text/.code section. In this case, we could choose to trigger this breakpoint during code writing or
execution.

In two-stage unpacking cases, the first unpacked binary might be a DLL. Therefore, depending on
the context, it might be useful to convert the DLL binary to executable, and there’re many ways to
accomplish this task, but my favorite method is editing the PE header to alter the Characteristics
field and make the entry of the exported function as an entry-point.

To visualize, handle and fix most of issues after unpacking a binary you can use the following well-know
tools such as:

PEBear is an excellent tool written by Aleksandra Doniec (a.k.a Hasherezade) that’s used to
visualize details of a PE Header and fix many binary issues. You can download this tool from:
https://github.com/hasherezade/pe-bear-releases

Pestudio is a great tool written by Marc Ochsenmeier and it’s mainly used to triage and collect
different information of a potential malware. The tool (free and paid versions) are available here:
https://www.winitor.com/features

CFF Explorer, which makes part of Explorer Suite, it’s an well-known PE Editor that is used to
visualize and fix PE headers. The Explorer Suite can be downloaded from:
https://ntcore.com/?page id=388

pe_unmapper is another tool written by Aleksandra Doniec (a.k.a Hasherezade) that can be used
for converting a PE binary from mapped version to unmapped version, so fixing all PE alignment
issues. This tool can be downloaded from:
https://github.com/hasherezade/libpeconv/tree/master/pe unmapper

10| Page

https://github.com/hasherezade/pe-bear-releases
https://www.winitor.com/features
https://ntcore.com/?page_id=388
https://github.com/hasherezade/libpeconv/tree/master/pe_unmapper

https://exploitreversing.com

= Scylla is an amazing x86/x64 Import Reconstructor that is already embedded in x64dbg. If you need
the standalone version, so you can download it from: https://github.com/NtQuery/Scylla

= HxD is an excellent hex-editor that we could be used, for example, to check and fix PE headers
manually. It can be downloaded from: https://mh-nexus.de/en/hxd/

= XVI32 Hex Editor is another interesting hex-editor that is great to clean up dumped memory
regions to isolate the unpacked binary. XVI32 Hex Editor can be downloaded from:
http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm

Once again, remember that unpacking is only the first obstacle during malware analysis, and many other
hard challenges such as string de-obfuscation, APl resolving, C2 configuration extraction, C2 emulation and
other topics are also in out list. This project will cover several unpacking situations and all of these
mentioned tasks in the next articles.

Now we have a minimal knowledge about unpacking process, issues and solutions, it’s time to review
different code injection techniques, which could help you to have a better comprehension about
unpacking.

6. Code Injection Review

Code injection is a supported operation on Window systems and, of course, it a quite useful evasion
method due to the fact that a malware is able to inject (write) a malicious code into a memory region
(some people use the term “segment”) of the process itself (self-injection) or a remote one (remote
injection), and this payload will be executed on the target context as whether it made part of it and
without leaving many evidences. Furthermore, the source process (malware) can cleanly terminate itself
while the malicious payload continue being running in a supposedly good process (for example,
explorer.exe and svchost.exe). At end, it’s a stealth approach for evading security defenses.

It's quite interesting to figure out that a long list of mitigations and protections such as Code Integrity
Guard, Extension Point Disable Policy, Control Flow Guard, Code Integrity Guard, Dynamic Code
Restriction and Arbitrary Code Guard (a kind of update of Dynamic Code Restriction) exist since Windows
8.1 (mainly Windows 10 and 11) and it isn’t so easy to perform code injection on these Windows versions
without being detected and prevented. Further information about these mitigation and protection can be
read on: https://docs.microsoft.com/en-us/windows/security/threat-protection/overview-of-threat-
mitigations-in-windows-10, https://docs.microsoft.com/en-us/microsoft-365/security/defender-
endpoint/customize-exploit-protection and https://techcommunity.microsoft.com/t5/core-infrastructure-
and-security/windows-10-memory-protection-features/ba-p/259046.

There are excellent public documents explaining several code injection techniques, but at a summarized
way, the main code injection techniques are the following ones:

= DLL Injection: this old technique is used to force a process to load a DLL. Main potentially involved
APls: OpenProcess(), VirtualAllocEx(), WriteProcessMemory and CreateRemoteThreat |
NtCreateThread() | RtiICreateUserThread().

11| Page

https://github.com/NtQuery/Scylla
https://mh-nexus.de/en/hxd/
http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm
https://docs.microsoft.com/en-us/windows/security/threat-protection/overview-of-threat-mitigations-in-windows-10
https://docs.microsoft.com/en-us/windows/security/threat-protection/overview-of-threat-mitigations-in-windows-10
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/customize-exploit-protection
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/customize-exploit-protection
https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/windows-10-memory-protection-features/ba-p/259046
https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/windows-10-memory-protection-features/ba-p/259046

https://exploitreversing.com

= PE Injection: in this technique a malicious code is written and, consequently, forced to be executed
in a remote process or even in the own process (self-injection). Main related APIs: OpenThread(),
SuspendThread(), VirtualAllocEx(), WriteProcessMemory(), SetThreatContext() and
ResumeThreat() | NtResumeThread().

= Reflective Injection: this technique is similar to PE Injection, but the malicious code avoid using
LoadLibrary() and CreateRemoteThread(), for example. There’re many interesting derivations of
this method and, one of them (also used on Cobalt Strike) is accomplished by the following APIs:
CreateFileMapping(), Nt/MapViewOfFile(), OpenProcess(), memcpy() and
Nt/MapViewOfSection(). At end, code on remote process can be executed by calling
OpenProcess(), CreateThread(), NtQueueApcThread(), CreateRemoteThread() or
RtICreateUserThread(). It’s interesting to note that a variant could use VirtualQueryEx() and
ReadProcessMemory() too.

= APC Injection: this code injection technique allows a program to execute code in a specific thread
by attaching to an APC queue. The injected code will be executed by the thread when it exits of
alertable state (originated by calls such as SleepEx(), SignalObjectAndWait(),
MsgWaitForMultipleObjectsEx(), WaitForMultipleObjectsEx(), or WaitForSingleObjectEx()).
Therefore, it’s common to also see APIs such as CreateToolhelp32Snapshot(), Process32First(),
Process32Next(), Thread32First(), Thread32Next(), QueueUserAPC() and KelnitializeAPC()
involved into this technique.

= Hollowing or Process Replacement: this technique, in a nutshell, is used by the malware to “drain
out” the entire content of a process and insert into it a malicious content. Some involved APlIs are
CreateProcess(), NtQueryProcessinformation(), GetModuleHandle(),
Zw/NtUnmapViewOfSection(), VirtualAllocEx(), WriteProcessMemory(), GetThreadContext(),
SetThreadContext () and ResumeThread().

= AtomBombing: this technique is an a variant of the previous technique (APC injection) and works
by splitting the malicious payload into separated strings, creating an Atom to each given string,
copying them into a RW segment (using GlobalGetAtomName() and NtQueueApcThread()) and
setting the context by using NtSetContextThread(). Therefore, a list of further APIs are
OpenThread(), GlobalAddAtom(), GlobalGetAtomName() and QueueUserAPC().

= Process Doppelgdnging: this technique could be handled as a kind of evolution of Process
Hollowing. The key difference between this both techniques is that while Process Hollowing
replaces the process’s content (image) before it being resumed, Process Doppelganging is able to
replace the image before the process even being created by overwriting the target image with a
malicious one before it being loaded. The key concept here is that NTFS operations are performed
within transactions, so either all these operations inside a transactions are committed together or
none of them are committed. In the meanwhile, the malicious image only exists and it’s visible
inside the transaction and it isn’t visible to any other process. Therefore, the malicious image is
loaded into memory and the malware drops the malicious payload from file system (by rollbacking
the transaction) as the file never had existed previously. Some APlIs are involved in this technique:

12| Page

https://exploitreversing.com

CreateTransaction(), CreateFileTransaction(), NtCreateSection, NtCreateProcessEx(),
NtQuerylnformationProcess(), NtCreateThreadEx() and RollbackTransaction().

= Process Herpaderping: this technique is similar to Process Doppelganging, but there’s a subtle
difference in its procedure. Process Herpaderping is based on that fact that security defenses
usually monitor process creation by registering a callback routine on the kernel side using
PsSetCreateProcessNotifyRoutineEx() or during driver’s DispatchCleanup routines
(IRP_MJ_CLEANUP), which it is invoked after a thread being created. That’s the key issue: if the an
adversary create and map a process and, afterwards, this adversary is able to modify the file image
and then create the thread, so security products are able to detect such a malicious payload.
Nonetheless, this checking order can be comprised whether the adversary is able to create
malicious binary on disk, open a handle to it, map it as an image section using NtCreateSection
function (and including the SEC_IMAGE flag), create a process using the section handle
(NtCreateProcesEx()), modify the file content to not sounds like malicious and create a thread
(NtCreateThreadEx()) using this “good image”. That the point: when the thread is created, the
process callback is triggered and the content of the file (good one) on disk is checked, so security
defenses believes that everything is fine because image on disk is not harmful, but the true
malicious is on memory. In other words, security defenses could not be effective to detect such
image on disk that is different from image on memory. Few APIs used for this technique:
CreateFile(), NtCreateSection(), NtCreateProcessEx() and NtCreateThreadEx().

= Hooking Injection: to use this technique, we will see that functions involved with hooking activities
such as SetWindowsHookEx() and PostThreadMessage() are used to inject a malicious DLL.

= Extra Windows Memory Injection: using this technique, malware threats injects code into the a
process by using the Extra Windows Memory (as known as EWM), whose size is up to 40 bytes and
it’s appended the instance of a class during the registration of windows classes. The trick is that the
appended spaced is enough to store a pointer that might forward the execution to a malicious
code. Some possible APIs involved to this technique are FindWindowsA(),
GetWindowThreadProcessld(), OpenProcess(), VirtualAllocEx(), WriteProcessMemory(),
SetWindowLongPtrA() and SendNotify().

= Propagate Injection: this technique has been used by malware threats such as RIG Exploit Kit and
Smoke Loader to inject malicious code into explorer.exe process (medium integrity level) and other
persistent ones, and it’s based on the approach of enumerating (EnumWindows() 2>
EnumWindowsProc = EnumChildWindows() = EnumChildWindowsProc = EnumProps() =2
EnumPropsProc = GetProp) windows implementing SetWindowsSubclass() (this further
information on https://docs.microsoft.com/en-us/windows/win32/api/commctrl/nf-commctrl-
setwindowsubclass). As you could remember, this function install a windows subclass callback and,
as you know, callbacks are interpreted as hooking methods in the security world. How does it
works? Once subclassed windows are found (checking UxSubclassinfo and/or CC32Subclassinfo,
which provide the subclass header), it’s possible to preserve the old windows procedure, but we
can also assign a new one to the window by updating CallArray field. When an event to the target
process is sent then the new procedure is called and, afterwards, the old one is also called (keeping

13| Page

https://docs.microsoft.com/en-us/windows/win32/api/commctrl/nf-commctrl-setwindowsubclass
https://docs.microsoft.com/en-us/windows/win32/api/commctrl/nf-commctrl-setwindowsubclass

https://exploitreversing.com

the previous and expected behavior). Therefore, a malware inserts a malicious payload (shellcode)
into the memory and updates subclass procedure using SetPropA(). When this new property is
invoked (through a windows message) , the execution is forwarded to the payload. Some Windows
APIs involved to this technique are FindWindow(), FindWindowEx(), GetProp(),
GetWindowThreadProcessld(), OpenProcess(), ReadProcessMemory(), VirtualAllocEx(),
WriteProcessMemory(), SetProp() and PostMessage().

This short and quick review about code injection techniques will be useful to understand how malware try
to keep undetected and also indirectly will help you to understand unpacking techniques.

A quite usual example of a code injection sequence from malware threats is shown below (a decompiled
output from IDA Pro) and, certainly, you’ll be able to identify the technique used through information
presented previously in this section:

Buffer[3] (int) &v10;

Buffer[e6] 0;

w3 = GetModuleHandleA("ntdll.d11") ;

NtUnmapViewOfSection = (NTSTATUS (_ stdcall *) (HANDLE, PVOID))GetProchAddress(v3, "NtUmmapViewOfSection") :
v1l2 = lpBuffer;

if (*(WORD *)lpBuffer != 'ZM' }
goto LABEL 17;
vd = (char *TipBuffer + *{{ DWORD *)1pBuffer + 15);
Buffer[1l] = (int)vd; -
if (*(_DWORD *)v4 I= 'EP')

goto LABEL 17;
memset (&StartupInfo, 0, sizeof (StartupInfo));
1pProcessInformation->hProcess = 0;
1pProcessInformation->hThread = 0;
1pProcessInformation->dwProcessId = 0;
IpProcessInformation->dwThreadId = 0;
if (!CreateProcessw(0, lpCommandLine, 0, 0, 0, 4u, 0, 0, &StartupInfo, lpProcessInformation))
goto LABEL 17;
w5 = (CONTEXT *)VirtualAllec(0, 4u, 0x1000u, 4u);
1pContext = vh;
wvE->ContextFlags = 0x10007;
if (!GetThreadContext{lpProcessInformation->hThread, v5)
|l 'ReadProcessMemory (lpProcessInformation->hProcess, (LPCVOID) (v5->Ebx + 8), Buffer, 4u, 0))
{
goto LABEL 17;
}

if (Buffer[0] == *((DWORD *)v4 + 13))
NtUnmapViewOfSection{lpProcessInformation->hProcess, (PVOID)Buffer[0]) ;
w6 = (char *)VirtualAllocEx(

1pProcessInformation->*hProcess,
*((LPVOID *)v4d + 13),
*{{_DWORD *)vd + 20),
0x3000u,
0x40u) ;
v1ld = w6}
if (lve)
goto LABEL 17;
if ('WriteProcessMemory (lpProcessInformation->hProcess, v6, lpBuffer, *((DWORD *)wv4d + 21), 0})
goto LABEL 17; N
vl = 0;
wvle = 0;
while (v7 < *({unsigned __intls *)ywd + 3))
{
v1ls = (char *)lpBuffer + 40 * v7 + *{({ _DWORD *)lpBuffer + 15) + 248;
WriteProcessMemory (lpProcessInformation->hProcess, &v14[v15[3]], (char *)lpBuffer + v15[5b], v15[4], 0);
w7 = ++vl6;

}

if (WriteProcessMemory (lpProcessInformation->hProcess, (LPVOID) (lpContext->Ebx + 8), v4 + 52, 4u, 0)
&& (v8 = 1pContext,
lpContext—>*Eax = (DWORD) &v14[*({ DWORD *)v4 + 10}],
SetThreadContext (lpProcessInformation->hThread, v8))
&& ResumeThread (lpProcessInformation->hThread) != -1)
{
result = 1;

}
[Figure 4]

14| Page

https://exploitreversing.com

7. Unpacking Methods

It’s quite complicated to classify and, mainly, describe unpacking techniques, but in a general way there’re
few methods to unpack a malware sample such as using a debugger, an automated tool, a web service or
even writing its own unpacking code to accomplish the task statically. The chosen methods depends on
specific contexts and situations.

a. Debugger + breakpoint on specific functions

This is the most known method and consist on loading the malware into a debugger and setting up
software breakpoints on well-known APIls, which most of them are related to memory management and
manipulation, and looking for executables and/or shellcode to be extracted from the memory. Using
x64dbg/x32dbg ([ctrl]+g or bp <function> on its CLI) is really simple to insert software breakpoints on the
following APls:

= CreateProcessinternalW()

= VirtualAlloc()

= VirtualAllocEx()

= VirtualProtect() | ZwProtectVirtualMemory()

= WriteProcessMemory() | NtWriteProcessMemory()
= ResumeThread() | NtResumeThread()

= CryptDecrypt() | RtiDecompressBuffer()

= NtCreateSection() + MapViewOfSection() | ZwMapViewOfSection()
= UnmapViewOfSection() | ZwUnmapViewOfSection()
= NtWriteVirtualMemory()

= NtReadVirtualMemory()

During the unpacking procedure we might face some issues (for example, anti-debugging techniques being
used by the malware) and other side effects. Therefore, some notes before and after unpacking could be
useful:

= Set up breakpoints after malware has reached its entry point (after the system breakpoint).
= As mentioned previously, it's recommended to use an anti-debugging plugin and, in few cases, to

ignore all exceptions from 0x00000000 to OXFFFFFFFF range (on x64dbg, go to Options 2>
Preferences = Exceptions to include this range).

= Sometimes ignoring exceptions could be a bad idea because malware could be them to call the
unpacking procedure. Additionally (and out of the context in this article) there are threats that use

interruptions and exceptions to call APIs.

= Learning about all listed APIs and their respective arguments by using MSDN is a key knowledge to
unpack malware threats successfully.

15| Page

https://exploitreversing.com

= |f you're using VirtualAlloc(), it's recommended to setup the breakpoint on its exit point (ret 10).
Additionally, sometimes it is easier to follow the allocated content on dump by setting a write
memory breakpoint.

= |n some cases, the malware extracts its payload onto memory, but it destroys the PE Header, so
you’ll have reconstruct the entire header, though it’s simple procedure using a hex editor like HxD.

= The extracted payload might be in mapped or unmapped format. If it’s in mapped format, so
probably the Import table is messed up and you need to fix them by realigning sections headers
manually through PEBear (favorite method) or using a tool like pe_unmapper. You might need to
fix the base address and the entry point whether it’s zeroed.

= Toreconstruct a destroyed IAT it’s recommended to use Scylla (embedded on x64dbg). It will be
necessary to enter the OEP and one of methods to find it is by looking for code transitions given by
instructions such as jmp eax, call eax, call [eax], and so on.

= Few unpacked malware samples don’t have any function in the IAT, so there’re two possibilities:
either sections are misaligned (mapped version) or the unpacked malware resolves all its
functions dynamically.

= Using the “g” hotkey on x64dbg might be useful for visualizing the code in blocks and finding
possible transitions to OEP.

= Another good alternative to find OEP is through code instrumentation like PIN
(https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-
instrumentation-tool.html).

= Tools like tiny_tracer (https://github.com/hasherezade/tiny tracer) use PIN to perform
instrumentation easier and can be used to learn about functions being called by the malware (quite
useful for unpacking and learning about anti-analysis techniques) and also to find possible OEP.

= In many opportunities, the unpacked code could be only the first stage of a malware, soit’s
necessary to repeat steps to unpack the next stages.

= Few malware sample perform self-overwriting, so you could have to set a breakpoint on the .text
section to detect the unpacked binary execution.

= Depending on the extracted binary (a shellcode, for example), it might not be able to run out of a
specific process context, so it’d be necessary to inject it into a running process (for example,
explorer.exe) to perform further analysis.

= How can you check whether the extracted malware might be the final one? There isn’t a definitive
answer and few indications might be found by looking for network functions from DLLs such as
WS2_32.dIl (Winsock) and Wininet.dll, plain text strings, crypto functions (mainly whether

16| Page

https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://github.com/hasherezade/tiny_tracer

https://exploitreversing.com

malware is an ransomware), and many other evidences. It's a good approach to open up the
extracted code on IDA Pro mainly after having re-aligned sections and/or reconstructed the IAT.

b. Debugger + break on DLL loading

This an old and simple technique to unpack malware by stopping the debugger on each DLL loaded and
examining the memory mapping for potentially extracted PE format files on the memory (pay attention:
don’t focus only on RWX segments because many malwares extracts its payload in RW regions and soon
before transferring the execution context to the extracted executable they change the region’s permissions
to RWX by using VirtualProtect()) . No doubts it can consume some time, but It continues being efficient in
many cases. Common debuggers (x64dbg, OllyDbg and Immunity Debugger) have a configuration option
to break on each DLL loading. On x64dbg this option is in Options - Preferences = Events and mark DLL
load. On OllyDbg you can go to Options = Debugging Options = Events and mark “Break on new module
(DLL)".

c. Automated method

A malware analyst can use tools to automate the unpacking procedure. Aleksandra Doniec (Hasherezade)
has provided excellent tools to attend this objective:

= hollows-hunter: https://github.com/hasherezade/hollows hunter/releases
= pe-sieve: https://github.com/hasherezade/pe-sieve/releases
= mal_unpack: https://github.com/hasherezade/mal unpack/releases

Her tools has a similar approach to each other, so you should run the malware in an isolated virtual
machine and execute the appropriate command, which | show some syntax examples below that can be
used for a quick approach, though all of these tools contain useful options and it’s worth to check them:

= hollow_hunter.exe /pname <filename> /loop /imp

= mal_unpack.exe /exe <filename> /timeout <timeout: ms>
= pe-sieveb4d.exe /pid <process ID>

= pe-sieveb4.exe /pid <process ID> /dmode 3 /imp 3

The unpacked binaries with some additional information are saved into a directory created by the tool.

d. Process Hacker

Another trivial (and limited) way to extract binaries from memory is through Process Hacker by double-
clicking on the running process, going to “Memory” tab, looking for interesting regions/base addresses
(RWX), double-clicking it and pressing “Save” button. Of course, it’s easier finding the malicious
binary/payload in case of self-injection. In case of remote injection you’ll need to reverse the malware to
understand the target process to be inject or make an “educated guess” and look for the injected code on
well-known targets like explorer.exe or svchost.exe, for example. Once again, it’s a limited and simple
approach, but sometimes can save time.

e. Using an public/paid Internet service

17| Page

https://github.com/hasherezade/hollows_hunter/releases
https://github.com/hasherezade/pe-sieve/releases
https://github.com/hasherezade/mal_unpack/releases

https://exploitreversing.com

You can use an Internet service as the amazing Unpacme (https://www.unpac.me/#/), which offers an
automated unpacking service. There’re a free and public plan (10 submissions per month) and other paid
plans that are quite interesting for researchers and companies. Furthermore, it offers an API set to
interface your customized application with the Unpacme service (https://api.unpac.me/).

f. Writing an unpacker code

Although this approach sounds being time consuming, it’s quite usual writing Python code to accomplish
unpacking mainly in shellcode cases or while handling a case which a malware threads use several anti-vm
and anti-debugging techniques. In addition, we have an advantage to automate the unpacking process
while handling similar malware cases.

8. Unpacking the binary

Now we made a fast review about fundamentals of malware analysis, let’s start our analysis. As I've
already explained previously, | picked up this sample because it’s quite simple and, in my opinion, it will be
useful to start our series of articles. Remember this sample has the following SHA256 hash:
8ff43b6ddf6243bd5ee073f9987920fa223809f589d151d7e438fd8cc08ce292.

Checking it using PEBear could be useful to collect first valuable information from malware:

o PE-bear v0.5.4 [C:/Users/Administrador/Desktop/MALWARE_ANALYSIS_1_REV_C/sample_1.bin] = B
File Settings View Compare Info
4 [sample_1.bin X ‘s £ 4 N
DOS Header 5
001 23 45 678 95 ABCDEF 0122456789ABCDETF ~
DOS stub -
34c 55 8B EC 83 7D OC 01 75 05 Z& 71 03 00 00 FF 75
“ NT Headers 85C 10 FF 75 OC FF 76 08 E8 AR FE FF FF 83 C4 OC 5D
Signature 86c €2 0C 00 55 8B EC &A 00 FF 15 A0 10 04 10 FF 75
File Header 37C 08 FF 15 5C 10 04 10 &8 03 04 00 CO EF 15 R4 10
Optional Hea... 88c 04 10 50 FF 15 RS 10 04 10 5D C3 55 BB EC B1 EC
Section Headers 3sC 24 03 00 00 && 17 & 3D C3 02 00 B5 CO 74 05 €A
4 Sections 8AC 02 5% CD 25 A3 38 1A 08 10 8% 0D 3¢ 1A 08 10 83
< 3 ted : : : : -
= = 8aC Disasm: .text General DOS Hdr Rich Hdr File Hdr Optional Hdr Section Hdrs Exports Imports Resources BaseReloc. DEbLQL
o rdata o+
ﬁ_ data Name Func. Count Bound? OriginalFirstThun TimeDateStamp Forwarder MameRVA FirstThunk
o 51 KERMEL32.dll a4 FALSE TRATA o o TFCF2 41020
ﬁ reloc USER32.dlIl 15 FALSE TFCOD o o TFDF3 411AC
GDI32.dIl 7 FALSE TFAS4 o o TFEGE2 41000
MPR.dIl 3 FALSE TFBFO o o TFEAA 4119C

KERMNEL32.dIl [94 entries]

Call via Name Ordinal Original Thunk Thunk Forwarder Hint a
41020 CreateDirectoryA - TFCCA TRCCA - SC
41024 CreateSemapho... - TFCDE TFCDE - B4
41028 DecodePointer - 20402 20402 - 127
4102C WriteConsoleW - a4z 2042 = 552
41030 CreateThread - 30482 80482 - 108
41034 WaitForSingleQ... - 80404 80404 = 544
41038 CloseHandle - 8048C 8048C - 30
£ ||4103¢ OutputDebugSt... - 80476 80476 = 3C3
| 41040 OutputDebugst... - 80460 80460 - 392
EL 41044 VirtualProtectbx - 7FCBE 7FCBE = 4F7 =
& | 41048 GetConscleMode - 80434 80434 - 208 v -

Check for updates
[Figure 5]

As we can see, there isn’t any DLL (and functions) at IAT directly related to network communication,
crypto or something really interesting. Therefore, it’s a first indication that our sample might be packed.

18| Page

https://www.unpac.me/#/
https://api.unpac.me/

https://exploitreversing.com

As this malware sample is a DLL, so we can learn about its exported functions because we’ll use them to
run the malware on the x64dbg/x32dbg:

o

File

Settings

View Compare

r E sample_1.bin

DOS Header
@ Dosstub
4 NT Headers
Signature
File Header
Optional Hea...
Section Headers
4 Sections
4 BE text
= EP=84C
uﬁ .rdata
uﬁ .data
o e
uﬁ .reloc

PE-bear v0.5.4 [C;/Users/Administrador/Desktop/MALWARE_ANALYSIS_1_REV_C/sample_1.bin]

Info
X i 21 & B @]
E 01 2 3 4 5 6 7 8 %9 ABCUDEF 0123456789 ABCDETF Ll
84C 55 8B EC 83 7D 0C 01 75 05 E8 71 03 00 00 FF 75 i
85C 10 FF 75 OC FF 75 08 EB AR FE FF FF B3 C4 OC 5D
86C €z 0C 00 55 BB EC A 00 FF 15 RO 10 04 10 FF 75
87C 08 FF 15 3C 10 04 10 &8 09 04 00 CO FF 15 R4 10
88C 04 10 S0 FF 15 AB 10 04 10 SD C2 55 BB EC 81 EC
83C 24 03 00 00 &R 17 EB 3D CB 02 00 85 CO 74 05 €A
8AC 02 55 CD 29 A3 38 1A 08 10 B9 OD 34 1A 08 10 B9
Disasm: .text General DOS Hdr Rich Hdr File Hdr | Optional Hdr Section Hdrs | ™ Exports W Imports ™ Resources " BaseReloc. ™ Debilgh
Name Value Meaning Lol
Characteristics 0
TimeDateStamp 5DA3TF3E Sunday, 13.10.2019 12:57:34 UTC
MajorVersion 0
MinorVersion 0
Narme TFSBA cool.dll
Base 1
MNumberOfFunc... 3
MNumberOfNames 5 b
Exported Functions [5 entries]
Ordinal Function RVA MName RVA Name Forwarder
1 30800 7FOC3 Callrun
2 30960 7FOCE Gold
3 306C0 7FAD0 Personthat
4 30890 TF3DB PlaceFamily
5 309E0 TFOE7 Usualfor

sample_1.bin

Check for updates

[Figure 6]

Using pestudio tool we are able to figure out a meaning difference between raw size and virtual size on
.data section, which is also marked as “writable”. It’s an additional indication that our sample might be
packed, as we expected.

file

about

2

settings

pestudio 9.21 - Malware Initial Assessment - www.winitor.com

<

sha236: 8FF43B6DDFE243BD5EENT3FS987920FA223809F589D151D7E438FDECC0OBCE292

ail indicators (43)

M

» dos-header (64 bytes)
B dos-stub (192 bytes)
- = rich-header (12}

- [» file-header (Oct.2019)
- > optional-header (GUI)
-5 directories (7)

- _| functions (119) *

= exports (3)

j resources {11 *
abe strings (4243)
4Tk debug (0ct.2019)

=B chusershadministradordeskto phm

>

property

name

md3

entropy

file-ratic (99.81%)
raw-address
raw-size (337088 bytes)
virtual-address
virtual-size (616163 bytes)
entry-point
characteristics
writable
executable
shareable
discardable
initialized-data
uninitialized-data
unreadable
self-modifying
virtualized

file

value
dext
ADOD453E1E6ASBEAIFAEDA. .

value
rdata
3333C12761C4B157EDDFE2T...

value

.data

E6F455353472C1CO0FF1F7E5...

6.734

4853 % 4824 %
0x00000400 0x00040000
0x00D03FCO0 (261120 bytes) OxD0D03FE00 (259584 bytes)
0x10001000 0x10041000
0x0003FBB3 (261045 bytes) 0x0003F4FD (259312 bytes)
0x0000144C -
0x60000020 0x40000040
x
cpu: 32-bit file-type: dynamic-link-library

4.908

2.655

048 %

Ox0007FEOD

0x0DODDADD (2560 bytes)
Ox 10087000

000014264 (82532 bytes)
0xC0000040

x

subsystem: GUI

value

0

EF71329030E2862FASS4ER4S. .,

2542

0.76 %

000080000

0x0000T000 (4096 bytes)
0x 10096000

0xD0DDDEBS (3768 bytes)

040000040

entry-point: 0x0000144C

value

.reloc

2325CO8T7CFEECADFBA229C. .

6.683
1.81 %

000081000
0x00002600 (9728 bytes)
0x 10087000
Dx00002524 (3508 bytes)

042000040

signature: r

[Figure 7]

19| Page

https://exploitreversing.com

Our malware sample has five exported functions and, without analyzing it on IDA Pro, it’s hard to guess
what they really do. However, we could try the first one named “Callrun” that, apparently, it’s a good bet.
Therefore, using x32dbg (this binary is 32-bit), we can run it by open the rundll32.exe and changing the
command line (File = Change Command Line) to "C:\Windows\SysWOW64\rundli32.exe"
C:\Users\Administrador\Desktop\sample_1.bin,#1.

After changing it, restart/reload the debugging session and set up the following breakpoints on few
classical functions (you can do it using CTRL+G or even the x32dbg command line interface) after you have
reached the entry point:

= VirtualAlloc (on its exit point)
= VirtualProtect
= ResumeThread

Run (F9) and, after hitting the first breakpoint (on VirtualAlloc()), right click on EAX and pick “Follow In
Dump”. The second hit will be in the same region and on the third hit you can right-click on the EAX and
choose “Follow in Dump 2”. If you wanted (not necessary here), you might go to the “Dump 2” tab, select
the first four hex bytes, right click = Breakpoint & Memory, Write = Singleshot (it could be useful in
case where malware take a long time to write on that region). If everything goes right (I hope) you’ll see an
image similar to the following one:

> rundli32.exe - PID: 72 - Module: kernel32.dll - Thread: Main Thread 4100 - x32dbg [Elevated] o B
File View Debug Tradng Plugins Favourites Options Help Dec 22 2020 (TitanEngine)
SE =0 e 9§ taull S Pfis sl B
By | rlog | [Unotes | ® Breskpoints | B MemoryMap | [CallStack | S8SEH | |of Sorpt | @] Symbols | <2 Source | . References | 9 Threads | e Handles | §7 Trace | PE PEViewer -J:E|

[B———+ | EEEER] ceFF mov_edi,edi _VirtualProtectstl . =
- 55 push ebp Hide FPU
ggsc :g; :EE‘eSp EAX 0OCE0591 ~
~ FF25 1407DCT6 jmp dword ptr ds:[<&virtualProtects] IMP. &virtualProtes EBX DOBEE383
o ints ECX 2F467916
cc int3 EDX 00000001
c int2 EBP 0O73F3DO &"|as"
o int3 ESP 0073F393
< intz EST DOCENDGD
oc int3 EDI GCOALOS 4 sample_1.6C0A1054
c int3
(E5 e EIP 7EDS7F20 <kernel3z._virtualProtectstubele>
< int3
o s EFLAGS 00000200
cc int2 ZF 0 PF O AF 0
o intz OF 0 SF O DF 0
c ints CFO0 TF1 IF1
c int3
c int3 LastError 000000CE (ERROR_ENVVAR_NOT_FOUND)
o int3 Laststatus C0000100 (STATUS_VARIABLE_NOT_FOUND)
< intz
Eg }:Eg GS 002E FS 0053
E5 D02E DS 002B
BEFF mov edi,edi _GlobalDeleteAtomé €S 0022 S5 002B
55 push ebp
BBEC mov ebp,es
ES 00CO0000 = S ST({0) 00000000000000000000 x87r0 Empty O.000000000000000000
56:3945 08 emp word ptr ss:[ebp-sl,ax ST(1) 00000000000000000000 x87rl Empty O.000000000000000000 v
v 72 0D jb kernel22,76D57FED < >
FF75 08 push dword ptr ss:[ebp+s] -
FF15 64100C76 €all dword ptr ds:[<& NtDeleteAtom@4s]) w | Default (stdcall) ~ |5 3]] unlocked
Y T o 3 1: [esp+4] 6C020000 "MZ™ ~
= 2: [esp+8] 0000B0O0DD
edi=sample_1.6C0A1054 3: [esp+C] 00000004
4: [esp+10] 00CE0Q591 w
5: Fesn+141 00n0nnnn
LTEeXT:7eD57F30 kernel32.d11:517F30 #8F30 < VirtualProtectStub@le:- < >
o5 3 return to ODCEOS47 from 222
@4 Dump 1 @44 Dump 2 4% Dump 3 4 Dump 4 4% Dump 5 8 watch 1 |x=] Locals 3 Struct "Mz ~
Address | Hex ASCIT -
00D00000 4D 38 5A 90|38 03 66 02|04 09 71 FF|81 BB C2 O |M8Z.8.7...qy. A,
00D00010| 01 40 C2 15(C6 DE 09 1C|0E 1F EA FE|00 B4 09 Cp|.@A.40....78. .1
00D00020 |21 B8 01 4C|CO OA 54 63|69 73 20 OE|70 72 &F &f|!,.LA.This .prog _—
00D00030| 67 61 &0 B7 (63 47 GE 1F [4F 74 ET &2 z§ | gam. cGn.otgbe Tu
00D00040 |SF 38 €5 0|44 4F 7E 53|03 6D 6F 64|55 25 OO Sp|_.1.00~5.mode. ..
00DO00S0|0A 24 4C 44(F1 01 19 53|D0 85 78 3D(83 58 04 AL[. & + SDuX=. X,
00D00060| 0A 13 3C 82 [BA 0OC BC 7C|6E F5 11 01|00 38 82 Bf|..<,°.%[n...8.%
00D00070| 0D F3 C2 B4(13 3F OC 52|14 63 63 68|30 46 9C Af|.6A.?7.R.1chOF,
00DOODB0 |50 45 O1 4C (01 40 D6 9A|89 €D 56 61|14 38 EO Of|PE.L.E0..mva.8a
00D00090|02 21 0B OL|0E 1D C1 1C|94 1B 32 14|86 D9 14 of|.r....A...2..0.,
00DOO0AD| 65 10 09 30(5E OF AA 0C|40 02 06 A6|34 8C 08 Ep|e..04,2.@.. 4..2 v " 8" v
NONNNNRNI AN 93 25 NAIAD FI 1F Nnl4n N5 AR N9l 3R 1N NR N .Y, AL A K.A... B . - B p— - .
< > >
Command: |Commands are commz separated (like assembly instructions): mov eax, ebx Default ¥
| Paused |INT3breakpoint at <kernel32._VirtualProtectStub @16 (76057F30)! Time Wasted Debugging: 0:00:26:28

[Figure 8]

20| Page

https://exploitreversing.com

As you can see, first characters on ASCII representation are “M8Z”, which suggests it’s using aPLib
compression. However, if you dump this region, you'll find out the unpacked binary at the same region.
Therefore, right-click on bytes from the “Dump 2” tab and choose “Follow in Memory Map” option:

W rundll32.exe - PID: 72 - Module: kernel32.dll - Thread: Main Thread 4100 - x32dbg [Elevated] = B

File View Debug Tracdng Plugins Favourites Options Help Dec22
LY RS ETEREN Pi=rZz SN .

B cru | Log [Notes * Breakpoints F# Memory Map [C) call Stack | = SEH 1#] Seript & symbols <> Source #~ References 'S Threads & Handles ¥ Trace E PE Viewer 1% SHDE

0 (TitanEngine)

Address | Size Info content Type | Protection | Initial A
Q0680000 | 00010000 MAP -Rw--
00650000 | 00001000 PRV -Rw--
00691000 00003000 |Reserved (00690000) PRV
006A0000 | 00001000 | \Devicel Harddiskvolume2'\windows®, MAP -R---
00680000 0000FO00 MAP [-R--—-
006C0000 | 00035000 Reserved PRV
00&F5000 | 0000BO0D PRV -RW-G
00700000 | 00032000 | Reserved PRV
00732000 | ODO0OEQDD | Thread 1004 Stack PRV -RW-G
00740000 00004000 MAP [-R-—-
00750000 | 00001000 MAP -R---
00760000 00002000 PRV | -RW-—
00770000 | 00001000 PRV -Rw--
00780000 | 00001000 PRV -Rw--
00790000 | 0000C000 | \Device\Harddiskvolume2\windows®, MAP -R---
007A0000 | 00007000 PRV ERW--
00780000 00008000 PRV | -RW-—
007E8000 | 00008000 Reserved (00TEOQ000) PRV
007C0000 | 00001000 PRV ER-—-
00700000 | 00001000 PRV ER---
007E0000 | 00006000 PRV -Rw--
007E6000| 0000ADD0 |Reserved (D07E0D000) PRV
007F0000 | 00001000 PRV ER---
00800000 0001A000 PRV | -RW-—
0081A000 | 00DE6000 Reserved (00800000) PRV
00500000 | 0DO7EO0QD | \DevicelHarddiskvolumez\windows®, MAP -R-—-
00980000 | 00000000 MAP -R---
00980000 | 00173000 | Reserved (00380000} MAP
00B000D00 | 00004000 MAP [-R--—-
00B04000 | 00004000 Reserved (002800007 MAP
00B10000| 00181000 MAP [-R--—-
Q0CAQQ00 | 00001000 PRV ER---
00CEO0Q00 | 00001000 PRV ER---
00CCOo000 | 00001000 PRV ER---
00CD0000 | 00001000 MAP -R---
00CED000| 00001000 PRV | ERW-—
00000000 PRV ERW--
00E70000| 00001000 | rund1132. exe IMG | -R——-
00E71000| 00005000 | . text” Executable code ING ER-——-
0OOE7&000 | 00001000| ".data” Initialized data IMG -Rw--
00E77000| 00001000| “.idara’ Import tables IMG | -R——-
OOE78000 | 00001000| ".didat” IMG -R---
ODE79000 | 00007000 ".rsrc” Resources IMG -R-—-—
00EBO0000| 00001000 | ".reloc” Base relocations ING ==
00E30000 | 0001E000D | Reserwved MAP
0Q0EAEQO0 | 00008000 MAP -R---
DOEBE000 | 0000CO00 |Reserved (OOE30000) MAP
00EC2000| 00003000 MAP [-R--—-
ODEC5000 | 00004000 Reserved (00OES0000) MAP
00EC9000| 00002000 MAP [-R--—-
ODECEQOC | 0196F000 Reserved (00ES0000) MAP
02834000 | 00413000 MAP | ====-
02C53000| 0023D000 Reserved (00ES0000) MAP w
n3rannnnl nn11znnn map |_p___
< >
Command: n nz separated (like assembly ins ., ebx Default ~
| Paussd | Dump: DODO00O -> 0ODOO0O3 (0x00000004 bytes) Time Wasted Debugging: 0:00:33:51

[Figure 9]

On the gray-highlighted base address, right click it and choose “Dump Memory to File” to save the
memory region on the Desktop. For now, keep the debugger opened (you could need to fix an eventual
destroyed IAT), and open the dumped file on the XVI Editor. Press CTRL-F and look for the string “This
program” (pay attention: this search works in this case because the PE Header wasn’t destroyed):

Find ?

Find
{* Teuxt string [&z Unicode Latin [UTF-16LE]

|This progran j

(™ Hex string Test -» Hex

Options Direchion Scope fram
[+ Case zensitive i Down v Cursor

[Joker char hex: lf . ~ Up " Beaqin

] Caricel | Help

[Figure 10]

21| Page

https://exploitreversing.com

Once you found it, you should look for “MZ” characters on two or three lines before. Now, put the cursor
at byte before the “MZ” mark, go to Edit = Delete to cursor as shown in the next couple of figures:

XVI32 - rundli32_00D00000.bin = B -

File Edit Search Address Bookmarks Tools XViscript Help
0= X & BEQadE § N

3D20||0F|39|1A|27|32|47|54|67 5C|81 33|3R|4C|C9|53|D1 7A|D9 88 E1|95 ES|D1 Fl|D8|F9 FC|F8 02 3B|E0 &0||#|9|~|"|z|6|T|g|® 7+ &« &A@ uldeq|i &0
ﬁSFZéT‘llC‘lS3050B4FFF54CE435B900003000000040000001?1?1?1?00"J"JBS"J"JGOO"J ¥ =t HOPHEF 4 ¥ .

3D&0 |00|00|/00 00 40 00 00|00 00 00 00 00|00 0000 00 00 00 0000 00 00 00 00000000 0000 Q000 00 @

3D80 |00|00|00|00 00 00 00|00 D8 00 00 00|0E 1F| B& 0OE 00 B4 0%|/CD 21 B8 01 4C|CD|21 54 68 6373|2070] A =1 <L), nitTRils p

3DA0 |72|6F|67|72 61 6D 20 &3 E 6F|74 20|62 65 20 72 75|6E 20 63 6E 20|44|4F 53 20 6D 6F|64 65||r o|g/rjam |cjanno|t| ble| |rjun| |ijn| |D|0|5S| mo|dle

3DCO 00|00(00(00(00|00|F1|12 53|D0|BS|78|3D 83|B5|78|3D|83 B5|78|3D|83(A1|13|3C|(82||. £ Al sBux=fux=Ffux=75; 1<,

3DEO||Ba 78 3D 83 BS5|78 3C|83 F5 78 3D 83|00 0D 38|82 B3|78 3D|83 00 0D 3D|8Z B4|78 3D 83 00 0D 3F|82 |° x|=|f|n x| < f & =x=f 8|, * xl=f =, | " =/=|f 2,

3E00 |B4|78|3D 83 52 €3 €3 &8 B5 78 3D 83 00 00/00 00 00 00 00|00 00|00 00 00|00 0000 00 00 00 0000/ x=fRichpx=7Ff —

3EZ0 |00|00/00 00 50 45 00 /00 4C 01 04 00 3& 8% €D &1 00 00 00|00 00|00 00 Q0ED 0002 21 0B 01 0E/1D L E n 5%nma a qvd 8

3E40 |00/1C|00 00 00 32 00|00 00 00 00 00|/D% 14 /00 00 00 10 0000 00 30 00 000000 00 10 00 10/00 00 z ik} + [u] 4+

[Figure 11]

XVI32 - rundl132_00D00000.bin - o IEN
File Edit Search Address Bookmarks Tools XViscript Help
DS X §BEBEQGE § A
—
0/|4ap|sa 50 00 0200 00 00|04 00|00 00 FF|FF 00 00 B2 00 000000 00|00 00 400000 000000 00 Oﬂlil L 4 §§ R @ ﬂ
20||00 /00 00 00 0000 00 00 00 000000 000000 000000 000000 0000 00000000 00 D800 0000 2 —
40||0E|1F|BA OE 00 B4 09CD|21 B8 01 4C|CD| 21 54 €8|63|73|20|70|72|6F 67|72 61 6D 20 &3 61 6E &£ &F [A| |=|A| |-| |f|1|,| |T|I|!|T/h|i|s| |p|c/c/g|z|ajm |c/z|n|nje
60||74|20 62 6520|7275 62|20 69 6E 20 44 4F 53 20 &D|&F 64 &5 2E 0D 0D|0Z 24 0000 00000000 00|t |be |rjun |in| D0/S molde H
80||F1|13|53 D0 BS|78|3D 83| BS |78 3D 83 BS|78|3D 83|A1|13|3C|82 | BA|78|3D|83 BS 78 3C 83 F5 783D 83| |A|}|S|B|u|x|=|F|u|x|=|f|u|=x|=|f i ||<|, |=|x|=|f|u|x|<|f &|x|=|f
20 |00 0D|32|82 B3|78 3D 83 00 0D 3D|22 B4 78|3D 83 00 OD|3F 82 B4|73 3D|83|52 69 &3 68 BS 73 3D 23 8, *lx=7f =, "x=f 2, “x=fRichnux=7F
C0||00 /00 00 00 0000 00 00 00 000000 000000 000000 000000 000000504500 004C|01 0400 P E L [
E0||92 83 6D 61 00 00 00 00 00 000000 E0 0002 21 0B 01 0E|1D 00 1C 00 00 00 3200 000000 0000 |5 %ma a 712 A H
100 |D9 /14|00 00 00 10 00 00 00 30 00 0000 000010001000 00 00 02 00 00 06 00 00 0000 0000 00 |01 + 0 + 4 1 -
120/|0& 0000 00 00 00 00 0000 80 000000 0400 00 ADES3 00000200 400500 001000 001000 00 |- € 4 - & 1 e | + +
140/|00 001000 00|10 00/ 00|00 00 000010 0000 00 60|33 00 00 5400 000022 350000200000 00 + + + 3 T 5

[Figure 12]

Save it, open it on PEBear and go to Imports tab as shown below:

<] PE-bear v0.5.4 [C/Users/Administrador/Desktop/rundli32_00D00000.bin] = = -
File Settings View Compare Info
4 [rundii32_00D00000.bin X ‘sp 52 5 N 2 B
DUSHEader = 01 2 3 45 67 8 9% ABGDETF
DOS stub
ut) 33 CO 40 C2 OC 00 B3 3D 60 &2 00 10 00 75 OF EB
“ NT Headers 8E3 03 FF FF FF C7 05 60 62 00 10 01 00 00 00 C3 S5
Signature 8F3 BB EC BB 55 0B 33 C35 56 BA 04 11 2C 41 3C 13 77 - - - v o - . -
File Header 303 2D 41 83 F5 04 72 F1 OF BE 42 01 BE 5B 00 00 00 Sa . SMB .M. .
Optional Header 919 8B CE 2B CB8 OF BE 42 02 3B C8 75 1Z OF BE 02 ZB - i % B . ; - -
Section Headers 929 F0 OF BE 42 03 3B FO 75 05 33 CO 40 EB 0Z 33 GO WM B . - - A l
4 Sections 939 SE 5D C3 55 8B EC B8 28 19 00 00 E8 A0 FG FF FF A - [G S8 § g
4 H et . .
= £p - 209 Disasm: .text General DOS Hdr Rich Hdr File Hdr Opticnal Hdr Section Hdrs ™ Exports W Imports ™ BaseReloc. " Debug
o4& rdata o+
‘ﬁ «data Offset Name Func. Count Bound? OriginalFirstThun TimeDateStamp Forwarder NameRVA FirstThunk
o reloc 2528 WININET.dII 0 FALSE 36B0 0] ITAE 30E8
Overlay 253C IPHLPAPI.DLL 1 FALSE 35F8 0 o 37D2 3030
2 MNETAPIZ2.dII 1 FALSE 3640 0 o 37FC 3008
2 ntdil.dil 1 FALSE 36DC 0] 3820 34
2 KERMEL32.dll 39 FALSE 3600 0 o 3AC4 3038
2 USER32.dll 1 FALSE 36A8 0 o 3ADE 30ED
2540 ADVAPIZ2.dII i FALSE 35C8 0] 3BCO 3000
WININET.dIl [10 entries |
Call via Narme Ordinal Original Thunk Thunk Forwarder Hint A
30E8 InternetOpend - 36F8 36F8 - e
30EC HttpSendRequestd = 3788 3783 = TF
< |30F0 InternetCloseHandle - 3708 3708 - 95
2 ||| 30F4 HitpQuerylnfol = 379C 379C = D
2
9| | 30F8 InternetCrackUrlA - 36E4 36E4 - SE
g 30FC HttpOpenRequestd - 3774 3774 - 78

[Figure 13]

22| Page

https://exploitreversing.com

As you can confirm, the IAT is perfect, there is one DLL related to network communication (WININET.dII)
and you also can see a slightly different Entry Point (EP). Therefore, it seems being our first stage unpacked
(you should always assume that might have further packed stages and to repeat the same analysis unless
you have an external information from other source or report). At this point, you can close the x32dbg
because we won’t need it anymore.

9. Reversing the decryption code

Now we have the unpacked binary, so let’s open it up in IDA Pro. There’re many ways to find encrypted
configuration, but certainly one of easier (and a bit inaccurate) is by looking for functions manipulating
Data or Unexplored areas of color bars on IDA Pro (actually, the unexplored are is much bigger than the
shown below):

Library function [l Regular function [Instruction Data Unexplored External symbol [Lumina function

[Figure 14]
Clicking on the start of the Unexplored area above, you'll see the following code:
.data:10004000 ; Segment type: Pure data
.data:10004000 ; Segment permissions: Read/Write
.data:10004000 data segment para public 'DATA' use32
.data:10004000 assume cs: data
.data:10004000 ;org 10004000h
.data:10004000 byte 10004000 db 10h ; DATA ¥REF: sub 10001CB7+F:w
.data:10004001 a0PP2400 db ' ORP pe24.00',0 N
.data:1000400E align 10h
.data:10004010 ; BYTE pbData
.data:10004010 db 0C5h ; DATA XREF: sub 10001CB7+2D:o
.data:10004011 db B8Bh ; <«
.data:10004012 db]
.data:10004013 db 15h
.data:10004014 db 7TFh 0
.data:10004015 db BEh Z
.data:100040186 db 92h !
.data:10004017 db 88h ; ~
.data:10004018 [unk 10004018 db 5Bh ; [; DATA ¥REF: sub 10001CB7+1Bro
.data:10004019 — db 2 B
.data:1000401A db 6
.data:1000401B db 4Dh M
.data:1000401C db 55h ; U
.data:1000401D db 0OCBh ; E
.data:1000401E db 0A8h ; ~
.data:1000401F db 0EOh ; 2
.data:10004020 db 4Ah ; J
.data:10004021 db OEFh i
.data:10004022 db OFCh i1
.data:10004023 db 0OBEh 35
.data:10004024 db 7

[Figure 15]

It’s quite interesting to notice that we see cross references to specific addresses in this region:

23| Page

https://exploitreversing.com

= byte_10004000 (16 bytes)
= pbData (8 bytes)
= unk_10004018 (likely 0x2000 bytes)

From my experience analyzing malware, | already know that pbData is an important argument to a couple
of APIs from Microsoft Crypto APlIs, so it’s an indicative that we are in the right track. Another pattern
found in many well-known malware sample is the structure key + encrypted data, so even | don’t have any
further indication about this case, | could suppose that “pbData” is some key (length of 8 bytes), though
sometimes it isn’t the final key because malicious threats use KDF (Key Derivation Functions) to generate a
definitive key from the provided password. Following our analysis, the “unk10004018” would be referring
to the potentially encrypted data.

Although we’re going well in the analysis, | mentioned previously this kind of “reverse thinking” is not
precise because we don’t actually know what the nature of the encrypted data that is stored at this
address location. It would be better to analyze the malware and, from important references and functions
that take these data, so we could have a better idea and context about data type involved here.

Following the cross-reference on pbData (X hotkey) we get to the subroutine sub_10001CB7. From this
point, we clearly see our data (pbData) is being pushed onto the stack as argument to subroutine
sub_10002131, as shown below:

.text:10001CB7 sub 10001CB7 proc near ; CODE XREF: sub 1000153C+74:p
.text:10001CB7 ; sub 1000153C:loc 100015C1:p ...
.text:10001CB7 mow eax, dword 10006264
.text:10001CBC test eax, eax
.text:10001CBE jnz short locret 10001CFE
.text:10001CCO push esi
.text:10001ccCl mow esi, 2000h
.text:10001CC6 mow byte 10004000, al
.text:10001CCB push esi ; dwBytes
.text:10001cCCC call sub 100011A4
.text:10001CD1 push esi
.text:10001CD2 push offset unk 10004018
.text:10001CD7 push eax
.text:10001CD8 mow dword 10006264, eax
.text:10001CDD call snh 10001214
.text:10001CE2 push 8 ; dwDataLen
.text:10001CE4 push offset pbDhata ; pbbhata
.text:10001CE®S push esi ; pdwDataLen
.text:10001CEA ush dword_lODOGQﬁd ; BYTE *
.text:10001CFO |call sub_10002131|
.text:10001CF5 mowv eax, dword 10006264
.text:10001CFA add esp, 20h
.text:10001CFD Pop esi
[Figure 16]

Observing other arguments and based on my previous experience, | know that other arguments being
passed to subroutine sub_10002131 are also involved with Cryptography. Please, we should also see that
dwBytes (from esi register, which received the value of 0x2000) is being used as an argument to
subroutine sub_100011A4, which only performs buffer allocation to receive a content, as shown below:

24 |Page

https://exploitreversing.com

-text:100011A4 sub 100011A4 Pproc¢ near ; CODE XREF: sub 10001267+1F.p
.text:100011a4 H sub_100013F6+F_p
.text:100011A4

.text:100011A4 dwBytes = dword ptr &

.text:100011A4

.text:10001124 push ebp

.text:1000114a5 mowv ebp, esp

.text:100011A7 Mow eax, hHeap

.text:100011AC test eax, eax

L text:100011AR dnz short loc 10001171C1

.text:100011RB0 |call ds:GetProEéssHeap

.text:100011B6 mowv hHeap, eax

.text:100011BB test eax, eax

.text:100011BD Jnz short loc 100011C1

.text:100011BF rop ebp

.text:100011cCO retn

L.text:100011C1 ; -
.text:100011C1

. text:100011cC1 loq_lOOOllCl: ; CODE XREF: 5ub_lDDDllA4+ﬂﬂj
.text:100011cC1 ; sub 100011A4+19:3
.text:100011cC1 rush [ebp+dwBytes] : de;tes
.text:100011C4 rush 4] ; dwFlags
.text:100011cCe push eay ; hHeap
.text:100011C7 |call ds:HeapAlloc
.text:100011CD pop ebp
.text:100011CE retn
-text:100011CE sub 100011A4 endp
[Figure 17]

Analyzing the subroutine sub_10002131 (a bit long) in several parts, we have the following code:

.text:10002131|: int cdecl sub 10002131 (BYTE *, DWORD pdwDataLen, BYTE *pbData, DWORD deataLenﬂ

.text:10002131 sub 10002131 pProc near ; CODE XREF: sub 10001CB7+39:p
.text:10002131

.text:10002131 phProv = dword ptr -0Ch

.text:10002131 phKey = dword ptr -8

.text:10002131 phHash = dword ptr -4

.text:10002131 arg O = dword ptr 8

.text:10002131 pdwDatalLen = dword ptr OCh

.text:10002131 pbData = dword ptr 10h

.text:10002131 dwDatalen = dword ptr 14h

.text:10002131

.text:10002131 push ebp

.text:10002132 mowv ebp, esp

.text:10002134 sub esp, 0OCh

.text:10002137 push esi

.text:10002138 push edi

.text:10002139 push 0F0000000h ; dwFlags
.text:1000213E xXor edi, edi

.text:10002140 lea eax, [ebp+phProvl]
.text:10002143 push 1 ; dwProvType
.text:10002145 push aedi : szProvider
.text:10002146 push aedi : szContainer
.text:10002147 push eax ; phProv
.text:10002148 mowv [ebp+phKey] , edi
.text:1000214B mowv esi, edi

.text:1000214D mowv [ebp+phHash], edi
.text:10002150 + i
.text:10002153 call ds:CryptAcgquireContextA
.text:10002159 test eax, eax

.text:1000215B jz short loc 100021cC1

[Figure 18]

25| Page

https://exploitreversing.com

Although CryptAcquireContextA() is a deprecated function, it continue being very used by malware
threats. This APl is used to acquire a handle to a key container with a CSP (Cryptographic Service
Provider) and it’s using a default key container name and a user default provider because both
arguments are zero (from xor edi, edi). Taking dwFlags (0xOF0000000) and searching this value on
wincrypt.h, we know that it is referring to CRYPT_VERIFYCONTEXT provider type, which is commonly seen
in applications using ephemeral keys or that don’t need access to persisted private keys. Actually, as you
will learn, this malware sample uses a kind of key derivation.

Next block of code reveals important information to our analysis:

.text:1000215D lea eax, [ebp+phHash]
.text:10002160 push eax ; phHash
Ltext:10002161 Push edi ; dwFlags
.text:10002162 rush edi ; hKey
.text:10002163 [push 8004h ; Algid |
.text:10002168 rush [ebp+phProv] ; hProw
.text:1000216B [call ds:CryptCreateHash|
.text:10002171 test eax, eax

Ltext:10002173 j=z short loc 100021C1
.text:10002175 push edi o ; dwFlags
LEext: 10002176 push [ebp+dwDatalen] ; dwDataLen
Ltext: 10002179 rush [ebpt+phbDatal ; phDhata
Ltext:100021°7C prush [ebp+phHash] : hHash
.text:1000217F call ds:CryptHashDatal
.text:10002185 test eax, eax

.text:10002187 jz short loc 100021C1
.text:10002189 lea eax, [ebp+phKey]
.text:1000218C rush eax : phEey
.text:1000218D |pu5h 280011h ; dwFlags
Ltext 10002192 push [ebpt+phHashl] : hBaseData
.text:10002195 |pu5h 6801h ; Algid
.text:1000219A rush [ebp+phProv] ; hProw
Ltext:1000219D |call ds:CryptDeriveKey

[Figure 19]
This block contains three APls and we have to analyze them one by one:

a. CryptCreateHash():

This function creates a CSP hash object and only one of its arguments, Algid, is quite interesting
and it set to 8004h.

Searching on https://docs.microsoft.com/en-us/windows/win32/seccrypto/alg-id we are able to
learn that 0x8004h means CALG_SHA1, so this malware is manipulating SHA1 hash (160 bits / 20
bytes). The return of this function is a handle to the CSP hash object (saved into the phHash
argument, which was initially zeroed) that is going to be used in the next function.

26| Page

https://docs.microsoft.com/en-us/windows/win32/seccrypto/alg-id

https://exploitreversing.com

b. CryptHashData():

This function adds data (given by pbData argument) of an specific size (given by dwDatalen
argument) into the hash object returned by CryptCreateHash(). Both arguments are the third and
fourth arguments of subroutine sub_10002131 (Figure 18). Following them, these arguments
comes from subroutine sub_10001CB7 (Figure 16), which shows that the size is 8 bytes and refers
to the possible key (pbData). At this point, CryptHashData() function is ingesting the possible key
(8 bytes) into the hash object, so generating a SHA1 hash. In other words, the malware’s code is
generating a hash output from an entry and the returned handle from CryptCreateHash() refers to
the CSP hash object, which holds this hashed data.

c. CryptDeriveKey():

This function generates session keys derived from a given seed data value and, according to its
definition, it guarantees that same sessions key will be generated using the same base data, so it’s
completely suitable for our case because we’re decrypting a configuration data. There are two
interesting arguments here: a. Algid is 0x6801 and dwFlags is 0x280011, and we need to discuss
about them.

The second argument (Algid == 0x6801) identifies the symmetric encryption algorithm and
according to the documentation (https://docs.microsoft.com/en-us/windows/win32/seccrypto/alg-
id), 0x6801 means CALG_RC4.

The fourth argument (dwFlags == 0x280011) deserves further details. According to documentation
(https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptderivekey):
“The key size, representing the length of the key modulus in bits, is set with the upper 16 bits of this
parameter. Thus, if a 128-bit RC4 session key is to be generated, the value 0x00800000 is combined
with any other dwFlags predefined value with a bitwise-OR operation”. Thus, we know the RC4 key
has 40 bits (0x28), so it has 5 bytes. Another part from MSDN documentation tells that “The lower
16 bits of this parameter can be zero or you can specify one or more of the following flags by using
the bitwise-OR operator to combine them”. Taking the possible values from MSDN page and
searching for them on wincrypt.h file (ReacOS provides us a sample:
https://doxygen.reactos.org/d7/d4a/wincrypt 8h source.html) we found that 0x11 means
CRYPT_NO_SALT + CRYPT_EXPORTABLE (both self-explaining).

Therefore, it’s really interesting to figure out that the malware’s author is using SHA1 as a KDF (Key
Derivation Function) to generate the final decryption key, which can be explained by the following
sequence:

a) pbData = C58B00157F8E9288 (Remember: to export data you should use SHIFT-E)

b) pbData = SHA1 (20 bytes)
c) SHA1 - CryptHashData() = CryptDeriveKey() = RC4 key (5 bytes)

27 |Page

https://docs.microsoft.com/en-us/windows/win32/seccrypto/alg-id
https://docs.microsoft.com/en-us/windows/win32/seccrypto/alg-id
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptderivekey
https://doxygen.reactos.org/d7/d4a/wincrypt_8h_source.html

https://exploitreversing.com

.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:

Of course, there’re much better KDF such as Bcrypt, Scrypt and Argon2 that might be used in real
applications, but we’re sure that malware’s author wasn’t concerned to aspects of using or not a
KDF resistant to FPGA, ASIC and GPU attacks.

10002143
100021A5
100021A7
10002128
100021AB
100021AE
100021AF
100021B1
100021B2
10002185
100021EBB
100021BD
100021cC1
100021C1
100021cC1
100021c1
100021Cc4
100021cCe
100021C9
100021CF
100021D2
100021D2
100021D2
100021D5
100021D7
100021DA
100021E0
100021E3
100021E3
100021E3
100021E6
100021E8
100021E9
100021EC

sub 10002131+2A+7

sub 10002131+42+7

test eax, eax
jz short loc 100021C1
lea eax, [ebp+pdwDatalLen]
rush eax ; pdwDatalen
rush [ebp+arg 0] ; pkData
rush edi ; dwFlags
rush 1 ; Final
rush edi ; hHash
push [ebp+phKevy] ; hKey
[call ds:CryptDecrypt |
test eax, eax
cmovnz esi, [ebp+pdwDatalen]
loc 100021cC1: ; CODE XREF:
cmp [ebp+phHash] , edi
jz short loc 100021D2
push [ebp+phHash] ; hHash
|call ds:CryptDestroyHash|
mowv [ebp+phHash] , edi
loc 100021D2: CODE XREF:
o cmp [ebp+phKey] , edi
jz short loc 100021E3
prush [ebp+phKev] ; hKevy
call ds:CryptDestroyKey
mowv [ebp+phEey] , edi
loc 100021E3: ; CODE XREF:
o cmp [ebp+phProv] , edi
jz short loc 100021F2
rush edi ; dwFlags
ush ebpitphProw : hProv
call ds:CryptReleaseContext

CryptDecrypt()

sub 10002131+93+7

sub 10002131+A4+7

[Figure 20]

This function is responsible for decrypting encrypted data by using a provided handle to the key
(hKey). Other arguments provided are hHash (handle to the hash object resulting from
CryptCreateHash()), Final (value equal to 1 because is the last and unique section being
decrypted), pbData (buffer containing the data to be decrypted) and pbwDatalen (pointer to a
DWORD that indicates the length of the pbData buffer that, in this case, is 0x2000).

Remember that pbwDatalLen (0x2000) is the second argument of the function being analyzed (
sub_10002131(BYTE *rc4_encrypted_data, DWORD pdwDatalen, BYTE *pbData, DWORD
dwbDatalen)). Therefore, the final result (RC4 decrypted data) is saved into the pbData and the
respective size is saved into pdwDatalen argument.

Another interesting point is that the pbData here is NOT the 8-byte key, but the encrypted data
coming from unk_10004018 data reference that was transferred to dword_10006264 memory
defined array within the subroutine sub_10001214, which I’'ve renamed its arguments (“N”

shortcut), as shown in the next figure:

28| Page

https://exploitreversing.com

.text:10001214 : int cdecl sub 10001214 (int data ptr, BYTE *encrypted data, int encrypted data size)
.text:10001214 sub 10001214 proc near h ; CODE XREF: sub 10001000+165:p h h
.text:10001214 ; sub 10001652+5C ,p

.text:10001214

.text:10001214 data ptr = dword ptr 8

.text:10001214 encr??ted data = dword ptr 0OCh

.text:10001214 encrypted:data_size= dword ptr 10h
.text:10001214

.text:10001214 push ebp

.text:10001215 mov ebp, esp

.text:10001217 mov eax, [ebp+data ptr]
.text:1000121A push esi o

.text:1000121B mov esi, [ebp+encrypted data size]
.text:1000121E test esi, esi

.text:10001220 jz short loc 10001236

.text:10001222 mov edx, [ebp:éncrypted data]
.text:10001225 push edi o
.text:10001226 mov edi, eax

.text:10001228 sub edi, edx

.text:1000122A

.text:1000122A loc 1000122A: ; CODE XREF: sub 10001214+1F,j
.text:1000122A - mov cl, [edx] -
.text:1000122C mov [edi+edx], cl

.text:1000122F inc edx

.text:10001230 sub esi, 1

.text:10001233 Jn=z short leoc 1000122A

.text:10001235 pop edi -

.text:10001236

.text:10001236 loc 10001236: ; CODE XREF: sub 10001214+C:j
.text:10001236 pop esi

.text:10001237 rop ebp

.text:10001238 retn

.text:10001238 sub 10001214 endp

[Figure 21]

The remaining functions (CryptDestroyHash, CryptDestroyKey and CryptReleaseContext) have clear
meanings and we don’t need to explain them here.

Finally we have all necessary information that we are going to use in the next step to write a configuration
extractor and decryptor:

= jinitial key: C58B00157F8E9288 (after first 16 bytes of .data section)
= jnitial data address: 0x10004018

= data size: 0x2000

= hash algorithm: SHA1 (20 bytes)

= decryption algorithm: RC4

= RC4 key size: 5 bytes

Let’s proceed to the next section and write a C2 data configuration extractor and decryptor.

10. Writing a data configuration extractor

Writing a configuration extractor is a task that might seem complicated at first time, but this only a matter
of learning the path once and, afterwards, you can take your own steps. Additionally, it isn’t not a such
thing (and not even new from last couple of years) as you could believe, and personally I've being doing it
for many years.

Several languages might be used, but | chose Python 3, which have nice features to writing any decoder. Ill
try not only to explain what each line does, but also show reasons for each decision.

29| Page

https://exploitreversing.com

My data C2 data decryptor code (named hancitor_conf_extractor_1.py) follows below:

L (s S Y = P T N6 T)

o

s RN s]

N = C

(5]

4=
=3

O =] on LT
T

o [N Y S P R 0 T e s T o i s w R s 3

o

o

I PO T S T T T T T % T T 0 B 0 T e

32
33

import binascii

import pefile

from Crypto.Cipher import ARC4
from Crypto.Hash import SHA

def extract data(filename):

pe=pefile.PE(filename)
for section in pe.sections:
if ".dzta" in section.Name.decode (encoding="'utf-8").rstrip('=z00"):
return section.get data(section.VirtualAddress, section.SizeOfRawData)

cdef data decryptor (rcdkey, encrypted config):

rcd cipher = ARC4.new(rcidkey)
decrypted config = rc4 cipher.decrypt (encrypted config)
return decrypted config

pdef main() :

filename = input("Filename: ")

datasec = extract data(filename)

datasecZ = datasec[lé:]

key = (datasec2[:81)

encrypted data = binascii.hexlify(datasec2[8:25¢])

hashed key = SHA.new(key) .hexdigest()

true key = hashed key[:10]

c2 config = data decryptor(binascii.unhexlify(true key) ,binascii.unhexlify(encrypted data))
print ("\n\nThe decrypted configuration follows: \n"

print(c2 config.decode('utf-£"))

if name =="' main ':

main()

[Figure 22]

Let’s try to explain line by line of the code, but not at the exact order of the Python 3 script:

a.

C.

Lines 1, 2, 3 and 4 perform necessary imports because code is manipulating a PE file and this
Python 3 script aims to decrypt data involved with RC4 and SHA1 algorithms, as well as it’s needed
to handle with transformations from binary to ascii, so binascii package is required too.

On lines 21, 22, 23 and 24 we start the main() definition and the code asks for user to enter the
filename of an unpacked Hancitor binary which the encrypted data is going to extracted from. The
extracted data is stored into the datasec variable as bytes.

The extract_data() (lines 6 to 13) doesn’t have anything new, but we should to highlight three
points: i.) our target section is the “.data”, where are stored the key and encrypted data (check
Figure 15); ii.) we are concerned to Unicode formatting and that’s the reason of being using
decode(encoding="utf-8’); iii.) the code is stripping possible ‘0x00’ from section names (common
while handling Unicode names); iv.) we’re using PE properties to delimit where the .data section
starts and ends.

Line 25 (datasec2 = datasec[16:]) defines datasec2 variable that contains key + all encrypted data
except the first 16 bytes, which is likely related to a campaign ID or something similar.

30| Page

https://exploitreversing.com

e. Line 26 (key = (datasec2[:8])) defines the key variable that, as we learned previously, is composed
by the first 8 bytes of datasec2.

f. Line 27 (encrypted_data = binascii.hexlify(datasec2[8:256]) stores the encrypted data
configuration into encrypted_data. Actually, as we learned from the reversed code, the buffer’s
size reserved by the binary code is 0x2000, but as you’ll see, collecting 248 bytes is enough, but you
could adjust it according to your needs. The hexlify() translates binary data to hexadecimal format.

g. Line 28 (hashed_key = SHA.new(key).hexdigest()) generates a hexadecimal SHA1 hash.

e. Line 29 (true_key = hashed_key[:10]) collects only the first 10 hexadecimal (5 bytes) according to
learned from CryptDeriveKey() explanation on page 27.

f. Line 30 (data_decryptor(binascii.unhexlify(true_key),binascii.unhexlify(encrypted_data))) calls
the decryptor function and one of important facts is that we must transform data from
hexadecimal string to binary representation before using RC4 functions.

g. The data_decryptor() (lines 15 to 19) is quite simple and basically decrypts the encrypted data
through RC4 algorithm using the given key (true_key variable from line 29).

h. Finally, on line 32 (print(c2_config.decode('utf-8'))) the result is sent to terminal. Once again, you
should note that before printing the decrypted data we need to decode it assuming to be handling
with a possible Unicode character set.

Executing this Python 3 script against our unpacked Hancitor binary sample we have:

C:\Users\Administrador\Desktop\MAS>hancitor_conf_extractor.py
Filename: unpacked_hancitor.bin

The decrypted configuration follows:

1918_nsw http://newnucapi.com/S/Forum.phplhttp://gintlyba.ru/S/Forum.php|http://stralonz.ru/S/Forum.php'

[Figure 23]

That’s great! We managed to extract and decrypt the Hancitor C2 configuration from the unpacked
Hancitor binary. The advantage of writing a decryptor script is that we can use it against all Hancitors
sample that follow the same binary pattern.

To confirm our script, let’s look for another Hancitor sample, unpacking it, trying to extract and decrypt its
C2 data configuration. Malware Bazaar offers an endless number of Hancitor samples and we can use
Malwoverview to list and download them, as shown on the next figure:

31|Page

https://exploitreversing.com

|remnux@remnux:~$ malwoverview.py -b 2 -B hancitor -0 © | more |

sha256_hash:
shal_hash:
md5_hash:
first_seen:
file_name:
file_size:
file_type:
mime_type:
tlsh:
reporter:
signature:
tags:

sha256_hash:
shal_hash:
md5_hash:
first_seen:
file_name:
file_size:
file_type:
mime_type:
tlsh:
reporter:
signature:
tags:

MALWARE BAZAAR REPORT

4d21708f0db3c0b39189d2f40d913fbh343abf68984e7ac638aedaffb3efl4el?
b51la45fl56ca7e002ed05f4eb991e8c242f6bf3e
918e24301e39c592e082efd4cldf489f9

2021-12-01 19:11:21

SecuriteInfo.com.Heur.28256.30222

668672 bytes

docx

application/msword
T1AAE422123CES9E32EGE306319DE2F5C6205CFCO9ESEG9C64B7690362D7577332CE22A21
SecuriteInfoCom

Hancitor

docx Hancitor

7835d1379¢c188fc7ccld4948calbl75fab9558564ecc32ecafead340e8959ccl
dd07abd964153947143cbhbfdccld4eldd5b178cO5
4026663c0a2c5229149f55b558db7143

2021-12-01 19:11:19

SecuriteInfo.com.Heur.17389.4268

668672 bytes

docx

application/msword
T146E422123CES59E32E6A306319DE2F5C6205CFCO9ESEG9C64F7690362D7577332CE22A21
SecuriteInfoCom

Hancitor

docx Hancitor

[Figure 24]

Collecting many possible Hancitor hashes is pretty easy, as shown below (the listing has been truncated):

remnux@remnux:~$ malwoverview.py -b 2 -B hancitor -0 0 | grep -i sha256_hash |

sha256_hash:
sha256_hash:
sha256_hash:
sha256_hash:
sha256_hash:
sha256_hash:
sha256_hash:
sha256_hash:
sha256_hash:
sha256_hash:
sha256_hash:
sha256_hash:
sha256_hash:
sha256_hash:
sha256_hash:
sha256_hash:
sha256_hash:

4d21708f0db3cPb39189d2T40d913fh343abT68984e7ac638aedatth3efldel2
7835d1379c188fc7ccld4948calbl75fab9558564ecc32ecafead340e8959ccl
eBad6c56Tc8b0e95e8ccef3d5122b996f3Tfhe8256c2d5¢c24ad817410809ee015
9d7c1176515448ele97ddebb2le7a6f3ea8lf313e675fhb8cf21858c4eh9c9fa3
3e7a338e34a7aca828e87cdb996b6728edefebcc95ad5219a9db6edaacfd6ded3
2c19a75d22fd1a7d9b08840721719b4534ba9c28253ac69b25f4408086285538
90df87274d669b237e651489b46d78d5f086e4eefh514997444h610829094ad8
125¢2b558cc9cedeee5cd0adb78¢cld7e9056ead0087422T01b52753439fac84f
0815e51f957cc4c91957111e6a010c9becc6faa8fefacdd22553T0866937516F
bd4ea®®blec65e6bfl3be7a9ed69ab0d92fc52d9529025661590875e7842ch54
8bf91ee9796419a5acealf27ecf8f10bOc8fcac3ab335e51c3e284ccch527d2d
bcdcflec9bf276c3e6eaddle64ff91fe836857Tc49c0c97b672adc0ab4aab6873
1330a9b1b83a5956ebb74c44a84673a35c1e84a078911e6de6b9a85Ff8Fd80823
1c9d20896f1c44c2dbbb6bb65979clec374d097b9af4d881c0c1949ddcld821f
clc2fd46cel9afa66360c6db20edba84c460b254dc4676949bf38bdd41cdd577
cf4adca8773145cTf0ald4ba32d555643442e14e9181ae8450bfh79abh86144914
245ddobfflc08559e5e68ea25aadbf5hc6ebef5831ecl9c34d8d2021747157fe

[Figure 25]

32| Page

https://exploitreversing.com

Therefore, we can pick up one of these hashes, download the respective sample from Malware Bazaar,
unzip it (password: infected) and load it into PE Bear (Figures 26 and 27):

remnux@remnux:~/malware/mas$ malwoverview.py -b 5 -B eded4c7la7d7a09d4dal860chfec4a0a02104b510eh359883e
3276a018f39%9ead8 -o 0O

MALWARE BAZAAR REPORT

SAMPLE SAVED!

remnux@remnux:~/malware/mas$ 7z e eded4c7la7d7a09d4dal860chfecdadad2104b510eb359883e3276a018F39ead8.zip

7-Zip [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=en_US.UTF-8,Utfl6=on,HugeFiles=on,64 bits,2 CPUs Intel(R) Core(TM) i7-1087
5H CPU @ 2.30GHz (A©652),ASM,AES-NI)

Scanning the drive for archives:
1 file, 210062 bytes (206 KiB)

Extracting archive: ede4c71a7d7a09d4dal860chfec4afad2104b510eh359883e3276a018f39ead8.zip
Path = ede4c71la7d7a09d4dal860chfec4afa02104b510ehb359883e3276a018f39ead8.zip
Type = zip

Physical Size = 210062

Enter password (will not be echoed):
Everything is 0k

Size: 388608
Compressed: 210062
[Figure 26]
<] PE-bear v0.5.4 [C:/Users/Administrador/Desktop/MALWARE_ANALYSIS_1_REV_C/hancitor_second_example/hancitor_sample_2.bin] - DR
File Settings View Compare Info
4 [hancitor_sample_2.bin X B 5 & y
DOS Header =
012 3/ 4/ 5 6 78/ % ABCDETF 0123456789ABCDETF ~ |
B Dosstub . " -
F842 55 8B EC 83 7D OC 01 75 05 E8 AR 07 00 00 FF 75 U.i.} . .u.&a=
NT Headers F852 10 FF 75 OC FF 75 08 E8 BS FE FF FF 83 €4 0C 5D
Signature F862 €z 0C 00 FF 25 C8 51 04 10 CC CC CC CC CC 68 FO | [ESSESEEEL T S o NS di i il i
File Header F872 SF 01 10 64 FF 35 00 00 00 00 8B 44 24 10 83 &C |
Opticnal Header Faaz Z4 10 BD 6C 24 10 2B E0 53 56 57 &1 98 €O 05 10
Section Headers F892 31 45 FC 33 CS5 50 89 65 E8 FF 75 F8 8B 45 FC C7
4 Sections — e et St St B = —
4 ﬁ et Disasm: text General DOS Hdr Rich Hdr File Hdr Optional Hdr Section Hdrs W Exports W Impoerts " Resources = BlushR
= EP=FaA2 +
ﬁ .rdata
-ﬁ data Offset Mame Func. Count Bound? OriginalFirstThun TimeDateStamp Forwarder MNameRVA FirstThunk
ﬁ gfids 59EED KERMEL32.dIl %0 FALSE SAF30 0 0 5B244 43000
50EF4 ole32.dil 4 FALSE SBOE4 0 0 5B296 43184
& e 59F08 hlink.dl 17 FALSE 3B09C 0 0 5B2AD 4516C
aﬁ reloc
< >
KERMEL32.dIl [90 entries]
Call via Mame Ordinal Original Thunk Thunk Forwarder Hint R
45000 VirtualProtect - 5BOF8 5BOF2 4EF
45004 OpenProcess 5B104 5B10A 380
- |||45008 InitializeCritical... - 56118 5B118 2E2
2 4500C EnterCriticalSec.. - 5B134 58134 EE
||| 45010 GetSystemTime 5B14C 5B14C 277
E‘ 45014 TlsAlloc 5B15C 5B15C 4C5
EI 43018 TlsSetValue 58168 58168 4C8

[Figure 27]

33| Page

https://exploitreversing.com

After unpacking this sample using the same method and breakpoints (on x32dbg) as shown previously, we
should verify it on PE Bear as shown below:

File Settings View Compare

4 E unpacked_hancitor_2.bin
DOS Header
B Dos stub
4 NT Headers
Signature
File Header
Optional Header
Section Headers
4 Sections

o FE text
= EP=DDD

aﬁ .rdata

aﬁ .data

o rerc

aﬁ .reloc

Overlay

e PE-bear v0.5.4 [C/Users/Administradar/Deskiop/MALWARE_ANALYSIS_1_REV_C/hancitor_second_example/unpacked_hancitor_2.bin] -
Info
X i 21 &8 O & B
= 01 2 3 45 6 7 8 % ABCTDEF 012345678 3ABCDE
Doo 55 BB EC B8 01 00 00 00 5D €2 OC 00 CC CC CC CC
DED S5 BB EC 83 3D 60 72 00 10 00 75 OF £8 7F ¥E ¥F
DFO0 FF C7 05 &0 72 00 10 01 00 00 00 5D C3 CC CC CC
E0D S5 8B EC 51 C7 45 FC 00 00 00 00 EB 03 8B 45 ¥C
E1l0 83 CO 01 B89 45 FC 83 7D FC 04 73 1C BB 4D 08 03
E20 4D FC OF B6 11 52 E8 85 0E 00 00 83 C4 04 85 CO
Disasm: .text General DOS Hdr Rich Hdr File Hdr Optional Hdr Section Hdrs Exports Imports Resources BasePu_\é.
+
Name Func. Count Bound? OriginalFirstThun TimeDateStarnp Forwarder NameRVA FirstThunk
WININET.dII 10 FALSE 4704 0] 4802 40E8
IPHLPARLDLL 1 FALSE 464C 0 0 4826 4030
MNETAPI32.dlII 1 FALSE 46F4 0 0 4850 4008
ntdll.dll 1 FALSE 4730 0] 4874 4114
KERMEL32.dlI 39 FALSE 4654 0 0 4B18 4038
USER32.dlI 1 FALSE 46FC 0 0 4B32 40ED
ADVAPIZZ.dIl 1 FALSE 461C 0] 4C14 4000
- WININET.dII | [10 entries]
E‘ Call via MName Ordinal Original Thunk Thunk Forwarder Hint £
_E A0ES InternetOpenA 474C A74C Cce
2| a0EC HttpSendReque..| - 47DC 47DC 7F
= |[40F0 InternetCloseH...| - 475C 475C 95
E A0F4 HttpQuerylnfoh | - ATFD 47F0 7D
§ A0F8 InternetCrackUrld - 4738 4738 SE
S || 40FC HttpOpenRequ...| - 47C8 47CE 78 v

Loaded: C:/Users/Administrador/Desktop/MALWARE_AN, TV3I5_1_REV_C/ha

Using our C2 data decryptor script against this second unpacked Hancitor we have:

citor_second_example/unpacked_hancitor_2.bin

C:\Users\Administrador\Desktop\MAS>hancitor_conf_extractor.py
Filename: unpacked_hancitor_2.bin

The decrypted configuration follows:

Check for updates

[Figure 28]

8710_pkrdv

http://strictence.com/8/forum.php | http://wimberels.ru/8/forum.php | http://cithernista.ru/8/forum.php |

[Figure 29]

As we expected, everything has worked well again and we have a good Hancitor script to extract and
decrypt its C2 configuration data.

There’re two other methods that could have used to extract the C2 data configuration from Hancitor:

= Cyber Chef: https://gchqg.github.io/CyberChef/
= Through a debugger (x32dbg)

Both approaches are great, but they are understood as “manual” methods and we would need to work on
one sample a time. Using a debugger is quite simple because it’s enough to set a breakpoint on
CryptDecrypt() and, once hit, execute until its exit point and check (Follow in Dump) its output
parameter (the 5" argument) on stack. Certainly, the reader knows how to perform these steps.

34| Page

https://gchq.github.io/CyberChef/

https://exploitreversing.com

To use CyberChef, we need to select the bytes of the key and export it using SHIFT+E (Edit = Export Data)
and copy this data into the Input area. Pick up From Hex recipe (because exported data are in hexadecimal
format) then the SHA1 recipe because we want a SHA1 hash from the Input, as shown in the Figure 30:

Download CyberChef ¥
Operations

from hex

From Hex

From Hexdump

From Hex Content
Favourites

Data format
Encryption / Encoding
Public Key

Arithmetic / Logic
Networking

Language

Last build: 3 months ago

Recipe S

Delirniter

Auto
SHA1 Q n

Rounds

50

Auto Bake

Options £ About / Support (@)

start: 16
. length: 16 - -—
Input e e g + O % =
C5B8B8O157FBED288
time: ims
length: 48 I— H
Output e 5] Om La

11f6689181460d6136213aacc0f93117d2a1096b

[Figure 30]

To the encrypted data (gathered from 0x10004018), repeat the same procedure by exporting it (SHIFT+E)
and copying it into the Input area. Drag RC4 recipe into Recipe area and pay attention to few points: a.)
the passphrase is composed by the first 10 hexadecimal digits (5 bytes) from SHA1 output (as we learned
from CryptDeriveKey()); b.) the Passphrase is in hex format; c.) the Input format is also in hexadecimal
format. Finally, we got the same result of our Python 3 script as shown in the Figure 31 below:

Download CyberChef &
Operations

rcd

RC4

RC4 Drop
CipherSaber2 Decrypt
CipherSaber2 Enerypt
Favourites

Data format
Encryption / Encoding
Public Key

Arithmetic / Logic

Networking

Last build: 3 months ago

Recipe S]
RC4 © n
Passphrase .
11£668918F HEX

Input format Qutput format

Hex Latin‘

Auto Bake

Options ¢ About / Support 0
start: 8192

length: 16384]
Input end: g2 © = + O2 =
P length: a lines: 1 :I o

SEB2064D55CBABEG4AEFFCBEGT4389B95E8226204E4048DAA4G18DEST JC1F3ALFEBSDAEACSEDSS
CO7CABFCO75261B374C6CCD6G19ECID3777DFT7ALDESBODE29CFDD2E42653C0127BAB2@1BDFABES
C4C1ASBCCO3BA242A2F8978EFSD403D5A1D16D50B887502FDCIBABSE2103BEB16001823C3EDSACES
3E3F1874D83C41B648501167EBFEAGZERFFFEDBA7ARLF730D3A435328082219ED7B11AFBS81D289
A218B5B7FAFCEABS2ATCOTEATBABEOL1EBOAT28BAZACTOOGFF2BFEETEOFO1104A1AGF29E203426]1
188C2C623AB2FBAF3CASGB2B2058E740DC314607DE75ECC3FDT7527BD8104152ADOAG465E3BE75
BAES64SBA17EEDBDCFEIFFTEIC77AG5ABASDY17E2FEB21411978CCED26086BDD56BE6555A8593BF
(@2619F@3D4A4E663B977C501509FA1B3C1BO734A548F6EQ6027TAECEGES2ABOO@14CCES2D651612
@ED3625ECE446B112B6334C@BFFEDS@CDEEBLBFABBAET223CT187CFDCBSC3073C525D4654E01CD
EGB220FFBO4GABABA12538DBFE7C4295DC716D1CFA6DABFEDESACTB4BDEBDBATCTI362D6711014

start: 8192 time: 13ms
end: 2192 length: 2192 I H
ou‘pu‘ length:] lines: 1 a D m -
1918 nsw........ http://newnucapi.com/8/forum.php|http://gintlyba.ru/g/forum.ph

plhttp://stralonz.ru/8/Forum.php| oo e

[Figure 31]

35| Page

https://exploitreversing.com

11. Conclusion

In this first article | showed how to extract and decrypt the C2 data configuration from Hancitor malware
by writing a Python 3 script. Additionally, | presented several concepts and foundations such as code
injection and unpacking that will be useful in next articles of this series. Anyway, maybe it’s quite relevant
to highlight few points here:

a. | preferred this simple malware sample due my final purpose that’s to help other professionals to
take their own steps on malware analysis and, to start a series of article, certainly it was quite
useful.

b. For now, | have hidden a lot reversing engineering details about this malware on propose because
the initial goal was focusing only on C2 data configuration extraction and decryption in this article.

c. Once again, and unlike what many beginners in reverse engineering might think about, data
extraction/decryption is not something new (not even close), and I've been doing it from many
years, so it’s a great topic to start with. Furthermore, getting C2 configuration is one of the main
goals while analyzing a malware (few other ones are infection’s vector, persistence, evasion and
network communication, for example).

d. Ichose Python 3 as script language because | think it’s easier to understand and most of security
researchers know well about it. No doubts, we could write programs in C or Golang and, eventually
we can use them in next articles.

e. We will study several samples and contexts in the next articles and review topics such as COM,
unpacking, code injection, C2 emulation, .NET reversing, anti-analysis techniques, API resolving,
string decryption, IDC/IDA Python, IDA AppCall and so on, so let’s take it one step at a time.

Don’t forget: this is a live document and | will update it soon | find mistakes and errors.

| have been working with reverse engineering for over a decade, I'd like having started this series
previously, but it wasn’t possible, unfortunately. Therefore, now my plan is to write a book about malware
analysis to contribute to the security community and continue this series. Let’s see what will happen.

Just in case you want to keep in touch, my public contact information follows below:

= Twitter: @ale_sp_brazil
= LinkedIn: https://www.linkedin.com/in/aleborges
= Blog: https://exploitreversing.com

Keep reversing and | see you at next time!

Alexandre Borges

36|Page

https://www.linkedin.com/in/aleborges
https://exploitreversing.com/

