https://exploitreversing.com

Malware Analysis Series (MAS):
Article 7

by Alexandre Borges
release date: JANUARY/05/2023 | rev: A.1

0. Quote

“The two most important days in your life are the day you are born and the day you find out why.”
(Mark Twain, Ernest T. Campbell, and others, and also mentioned in “The Equalizer” movie -- 2014)

1. Introduction

Welcome to the the seventh article of Malware Analysis Series, where we continue reviewing concepts,
techniques and practical steps used for analyzing malicious PE binaries.

If readers haven’t read previous articles yet, all of them are available on the following links:

= MAS_1: https://exploitreversing.com/2021/12/03/malware-analysis-series-mas-article-1/
= MAS_2: https://exploitreversing.com/2022/02/03/malware-analysis-series-mas-article-2/
= MAS_3: https://exploitreversing.com/2022/05/05/malware-analysis-series-mas-article-3/
= MAS_4: https://exploitreversing.com/2022/05/12/malware-analysis-series-mas-article-4/
= MAS_5: https://exploitreversing.com/2022/09/14/malware-analysis-series-mas-article-5/
= MAS_6: https://exploitreversing.com/2022/11/24/malware-analysis-series-mas-article-6/

This time we will be analyzing Dridex, which a complex banking trojan and that has been updated many
times in the last few years. Similar to other malware threats, Dridex steals credential information
(keylogger behavior) and send it to adversaries using an encrypted set of C2 servers, as usual and seen in
other families. On most occasions, it’s delivered by a malicious document as an attached file, but it is not
the only used vector. In terms of history, Dridex came up in 2014, and it is composed by a loader, which is
responsible for installing the payload and downloading additional modules such as VNC and SOCKS
support, and the payloader that’s able to download additional modules too.

Excellent malware analysts already analyzed it, produced good reports, and our goal here is only show few
hard aspects of this binary. As usual, there isn’t the purpose of dissecting any malware in this series of
articles, but only to present few points of view that enable readers to proceed with their own analysis.

To keep what we have done so far, all malware samples being analyzed are available from the well-known
sandbox services such as Triage, Malware Bazaar, Virus Total, Malshare, Polyswarm, Any.Run and other
ones.

If you want, you might use Malwoverview tool (https://github.com/alexandreborges/malwoverview) to
download and, get first information and analysis about downloaded sample from most of these services.

1|Page

https://exploitreversing.com/2021/12/03/malware-analysis-series-mas-article-1/
https://exploitreversing.com/2022/02/03/malware-analysis-series-mas-article-2/
https://exploitreversing.com/2022/05/05/malware-analysis-series-mas-article-3/
https://exploitreversing.com/2022/05/12/malware-analysis-series-mas-article-4/
https://exploitreversing.com/2022/09/14/malware-analysis-series-mas-article-5/
https://exploitreversing.com/2022/11/24/malware-analysis-series-mas-article-6/
https://github.com/alexandreborges/malwoverview

https://exploitreversing.com

2. Acknowledgments

We are in a new year, and it is hard to believe that | started writing this series of articles at end of 2021,
about a remarkably simple malware (Hancitor). Reading it again, | realized | included a list of concepts and
foundations about code injection, hints about unpacking, and after having done a short analysis, |
explained step-by-step how to write a C2 extractor for that family. Being honest, | didn’t have any plans for
writing a second article about malware analysis, but an unexpected reaction happened in favor of the
article and a substantial number of professionals asked to write a second article. Checking my records,
more than ten thousand people downloaded the article in less than one month, what also was surprising.

| have been around working with information security, either as primary or secondary work, for so much
time. | guess my first serious contact with information security was in 1997! At that time, | read the famous
“Smashing The Stack For Fun And Profit” (released in 1996 on Phrack by Aleph One) and | clearly remember
that it took me 45 days to really understand the article. It was a different age, and we didn’t have the
Google yet. At that time, | knew | had found my passion, but you know...passions are difficult to be
followed. Three years later, | worked as security analyst, and my primary role was executing penetration
test against company who had contracted the service. Hey... it was the year 2000 and this kind of job was
really unknown. Since this time, my passion for reversing engineering and vulnerability research/exploit
development has made part of my daily life, even when | worked for big companies doing a different job.

| initiated my reverse engineering career almost two decades ago (even as a secondary job and,
sometimes, hobby), but similar to other colleagues, | also read the famous series about exploitation from
Peter Van Eeckhoutte (a.k.a. @corelancOde3r) since 2009 (thank you for such excellent articles and
friendship, Peter), and also articles from other researchers and, of course, my passion was there, equalized
over a subtle balance with reverse engineering. After few years, | was focusing and planning to follow my
career in vulnerability research, but life had other plans and | returned working full time with reverse
engineering (out of big-techs), and for a long sequence of years. Of course, an extensive and excellent list
of events happened since 2015, | spoke in many big conferences around the world, met amazing people
over the years, learned a lot of stuff, and | am grateful for everything and every single moment.

In the last quarter of 2022, and after many, long years, | definitely returned (migrated) to vulnerability
research because, as | said, it has been my passion since ever, and now | finally can focus a hundred
percent of my energy on learning and doing something | really love to do, although | use reverse
engineering and programming for everything, which have been incredibly useful and, of course, | also like it
so much. Probably one of great experiences so far is that | have chance to remember myself that every
single day | know less.

As | have mentioned, reverse engineering and malware analysis make part of my life, and | plan to keep
speaking about it at conferences (if | have the opportunity to, of course) and writing this series of articles
and other new ones , to help professionals because | have realized as much useful these articles have been
for many people and, in some cases, this series (MAS) has helped them as an initial reference for working
in reverse engineering area.

Of course, there wouldn’t be this series without receiving the decisive help from llifak Guilfanov (@ilfak),
from Hex-Rays SA (@HexRaysSA) because | didn’t have an own IDA Pro license, and he kindly provided

everything | needed to write this series about malware analysis and other one that are coming. However,
his help didn’t stop in 2021, and he and Hex-Rays have continuously helped until the present moment by

2|Page

https://exploitreversing.com

providing immediate support for everything | need to keep these public projects. Additionally, llIfak is
always truly kind replying to me in every single time that | sent a message to him.

This section, about acknowledgments, can be translated to one word: gratitude. Personally, all messages
from lifak and Hex-Rays expressing their trust and praises on this series of articles until now are one of
most motivation to keep writing as well readers who send me even a single message thanking me.

Once again: thank you for everything, lifak.

| have chosen a quote to start each article to subtly show my thinking about the life and information
security in general, sometimes mirroring the present days and all the challenges that have forced to reflect
on everything. At the end of day, we should invest in the work that we really love doing, don’t matter our
age, because the life is short, and the ahead day is our future.

Finally, | leave the same message that Steven Seely (@steventseeley) sent me when | mentioned | was
finally restarting my career in vulnerability research: “enjoy the journey”.

3. Environment Setup
This article has a lab setup using the following environment:

= Windows 11 running on a virtual machine. You're able to download a virtual machine for
VMware, Hyper-V, VirtualBox or Parallels from Microsoft on: https://developer.microsoft.com/en-
us/windows/downloads/virtual-machines/. If you already have a valid license for Windows 11, so
you can download the ISO file from: https://www.microsoft.com/software-download/windows11

= IDA Pro or IDA Home version (@HexRaysSA): https://hex-rays.com/ida-pro/ . At time of drafting
this article, IDA Pro 8.2 has been released, and readers should read about the new features:
https://hex-rays.com/blog/ida-8-2-released/ . Of course, readers might use other reverse
engineering tool, but I'll be using IDA Pro and its decompiler in this article.

= System Informer (Process Hacker):

= |Install Visual Studio 2022, including MSVC v143 Spectre-mitigated libs (latest).
= git clone https://github.com/winsiderss/systeminformer.git

= cd systeminformer\build

= \build_release.cmd

= Go to systeminformer\build\output

= Execute processhacker-build-setup.exe

= x64dbg(@x64dbg): https://x64dbg.com/

= PEBear (@hasherezade): https://github.com/hasherezade/pe-bear-releases
= DiE (from @horsicq): https://github.com/horsicq/DIE-engine/releases

= HxD editor: https://mh-nexus.de/en/hxd/

= Malwoverview: https://github.com/alexandreborges/malwoverview

= Capa: pip install -U flare-capa | https://github.com/mandiant/capa/releases

3|Page

https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/
https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/
https://www.microsoft.com/software-download/windows11
https://hex-rays.com/ida-pro/
https://hex-rays.com/blog/ida-8-2-released/
https://x64dbg.com/
https://github.com/hasherezade/pe-bear-releases
https://github.com/horsicq/DIE-engine/releases
https://mh-nexus.de/en/hxd/
https://github.com/alexandreborges/malwoverview
https://github.com/mandiant/capa/releases

https://exploitreversing.com

To get further information about lab configuration, | recommend readers to reserve time to read the first
and second articles of this series. Both articles present concepts about unpacking topic and other details
that, eventually, could be useful.

4. References

Readers are able to find articles, news, references, and reports analyzing Dridex and, although | haven’t
had the opportunity to read them, | recommend readers to do it because they were written by excellent
security researchers and companies, who covered and analyzed several aspects of the same family, and
readers can learn what’s more appropriate for their work. The list below doesn’t have any preferred order:

https://malpedia.caad.fkie.fraunhofer.de/details/win.dridex

https://us-cert.cisa.gov/ncas/alerts/aal9-339a

https://unit42.paloaltonetworks.com/excel-add-ins-dridex-infection-chain/

https://blogs.vmware.com/security/2021/03/analysis-of-a-new-dridex-campaign.html

https://www.cert.ssi.gouv.fr/uploads/CERTFR-2020-CTI-008.pdf

https://redcanary.com/threat-detection-report/threats/dridex/

5. Recommended Blogs and Websites

There are excellent cyber security researchers keeping blogs and writing really good articles related to
reverse engineering, malware analysis, windows internals, and digital forensics, so readers could be
interested in reading and following their contents. | tried googling to make a quick and sorted list in
alphabetical order as follow below:

https://hasherezade.github.io/articles.html (by Aleksandra Doniec: @hasherezade)
https://malwareunicorn.org/#/workshops (by Amanda Rousseau: @malwareunicorn)
https://captmeelo.com/ (by Capt. Meelo: @CaptMeelo)

https://csandker.io/ (by Carsten Sandker: @0Oxcsandker)

https://chuongdong.com/ (by Chuong Dong: @cPeterr)

https://elis531989.medium.com/ (by Eli Salem: @elisalem9)

http://Oxeb.net/ (by Elias Bachaalany: @0xeb)

https://www.hexacorn.com/index.htm| (@Hexacorn)

https://hex-rays.com/blog/ (by Hex-Rays: @HexRaysSA)
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering (by Jifi Vinopal:
@vinopaljiri)

https://kienmanowar.wordpress.com/ (by Kien Tran Trung: @kienbigmummy)
https://www.inversecos.com/ (by Lina Lau: @inversecos)

https://maldroid.github.io/ (kukasz Siewierski: @maldr0id)
https://azeria-labs.com/writing-arm-assembly-part-1/ (by Maria Markstedter: @Fox0x01)
https://github.com/mnrkbys (by Minoru Kobayashi: @unknOwnbit)
https://voidsec.com/member/voidsec/ (by Paolo Stagno: @Void_Sec)
https://windows-internals.com/author/yarden/ (by Yarden Shafir @yarden_shafir)

4|Page

https://malpedia.caad.fkie.fraunhofer.de/details/win.dridex
https://us-cert.cisa.gov/ncas/alerts/aa19-339a
https://unit42.paloaltonetworks.com/excel-add-ins-dridex-infection-chain/
https://blogs.vmware.com/security/2021/03/analysis-of-a-new-dridex-campaign.html
https://www.cert.ssi.gouv.fr/uploads/CERTFR-2020-CTI-008.pdf
https://redcanary.com/threat-detection-report/threats/dridex/
https://hasherezade.github.io/articles.html
https://malwareunicorn.org/#/workshops
https://captmeelo.com/
https://csandker.io/
https://chuongdong.com/
https://elis531989.medium.com/
http://0xeb.net/
https://www.hexacorn.com/index.html
https://hex-rays.com/blog/
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering
https://kienmanowar.wordpress.com/
https://www.inversecos.com/
https://maldroid.github.io/
https://azeria-labs.com/writing-arm-assembly-part-1/
https://github.com/mnrkbys
https://voidsec.com/member/voidsec/
https://windows-internals.com/author/yarden/

https://exploitreversing.com

Certainly, there’re other excellent blogs containing good series of articles on reverse engineering and
malware analysis., so I'll include these references as soon as | learn about them in next articles.

6. Gathering Information

We are going to be working on following Dridex sample (SHA 256):
87e2dad373f75f5c0a200821523aebed5f6f4103b51fb0155ed2bf060ec50b04.dIl
Readers can gather first information about the sample from Malware Bazaar:

remnux@remnux:~$ malwoverview.py -b 1 -B 87e2dad373f75f5c0a200821523aebed45f6f4103b51fh
155ed2bf060ec50b04 -0 ©

MALWARE BAZAAR REPORT

sha256_hash: 87e2dad373f75f5c0a200821523aebe45f6f4103b51fb0155ed2bf060ec50b04

shal_hash: 970fd83b12bd1919ab684723b69c8a90d1a36b9b
md5_hash: b22a00cefca58fa81234983h81delfee
first_seen: 2021-12-21 14:48:53
file_name: 87e2dad373f75f5c0a200821523aebed5f6T4103b51fb0155ed2bf060ec50b04
file_size: 479232 bytes
file_type: dil
mime_type: application/x-dosexec
imphash: d67883ee85eede67419711a8fbhd7cabd
tlsh: T11EA4AF3181C5528AD705123423DA8065227F5326CC957FBF9CF982732A6BAEDDE3EODG
comments:
Dridex distributed via Log4Shell
reporter: blubbfiction
delivery: web_download
tags: dll Dridex
UnpacMe:

https://www.unpac.me/results/a5bb94cc-796b-47db-9268-adb68cc05656/

Triage: https://tria.ge/reports/211221-r6lksadgh5/
Triage sigs:
Dridex
Dridex Loader
Program crash
Suspicious behavior: EnumeratesProcesses
Suspicious behavior: GetForegroundWindowSpam
Suspicious use of AdjustPrivilegeToken
Suspicious use of WriteProcessMemory

[Figure 1]: Checking sample information on Malware Bazaar
Additionally, this sample can be easily downloaded by running the following command:

= malwoverview.py-b5 -B
87e2dad373f75f5c0a200821523aebe45f6f4103b51fb0155ed2bf060ec50b04 -0 0

Remember that the download is protected with a password: infected. Thus, you’ll need to unpack it by
running: 7z e 87e2dad373f75f5c0a200821523aebe45f6f4103b51fb0155ed2bf060ec50b04 -pinfected.

From Triage (you should first get the job ID with: malwoverview.py -x 1 -X <hash> -0 0), we have:

5|Page

https://exploitreversing.com

remnux@remnux:~/ma1ware/ma5/mas:7$ malwoverview.py -x 2 -X 211221-r6lksadgh5 -0 ©

TRIAGE SEARCH REPORT

score: 10
extracted:
botnet: 22206
c2:
120.50.40.185:443
139.59.14.223:8172
121.40.104.209:6602
139.162.113.169:593
family: dridex
key: key
value: S90YLNFUVY5SN1RDSpi8BgH6SgS8gPIcU
key: key
value: zwTHMB1SiSgHnmlqIchyvEq61SiocOXHE4rT4eCydGgyrIipLBzPItrelc82jktThqgPlT4yGq
rule: DridexLoader

dumped: memory/748-56-0x00000000746F0000-0x0000000074766000-memory.dmp
resource: behaviorall/memory/748-56-0x00000000746F0000-0x0000000074766000-memory.dmp

tasks: behaviorall behavioral2
id: 211221-r6lksadgh5
target: 87e2dad373f75f5c0a200821523aebed5f6f4103b51Ffb0155ed2bf060ec50b04
size: 479232
md5: b22a0bcefca58fa81234983b81ldelfee
shal: 970fd83b12bd1919ah684723h69c8a90d1a36b9b
sha256: 87e2dad373f75f5c0a200821523aebed5f6f4103b51Ffb0155ed2bf060ec50b04
completed: 2021-12-21T14:51:45Z
signatures:
Dridex

Dridex Loader

Program crash

Suspicious behavior: EnumeratesProcesses
Suspicious behavior: GetForegroundwWindowSpam
Suspicious use of AdjustPrivilegeToken
Suspicious use of WriteProcessMemory

targets:
family: dridex
iocs:
time.windows.com
52.109.8.20
8.8.8.8
168.61.215.74
md5: b22a00cefca58fa81234983h81delfee
score: 10
shal: 970fd83b12bd1919ab684723b69c8a90d1a36b9b
sha256: 87e2dad373f75f5c0a200821523aebed45f67f4103b51fh0155ed2bf060ec50b04
size: 479232bytes
tags:
family:dridex
botnet:22206
botnet
loader
target: 87e2dad373f75f5c0a200821523aebed45f674103b51fh0155ed2bf060ec50b04
tasks: behaviorall behavioral2

[Figure 2]: Triage information about the sample

6|Page

https://exploitreversing.com

We already have enough information about the sample:

This sample is really the Dridex loader.

Possibly enumerates processes and changes privileges.
It could be using WriteProcessMemory() for injection.
The associated botnet is 22206.

It communicates with a series of C2 servers (to be checked later).
Two keys are presented.

Checking its imported functions (there isn’t any exported function even being a DLL) using PE Bear:

~ E mas7.bin

DOS Header

DOS stub

w

MNT Headers
Signature
File Header
Optional Header

Section Headers

v Sections

hd ﬁ rdata

=p EP = 5000
nﬁ rdata#2
aﬁ .data
aﬁ JTSrC
aﬁ reloc

x| e

sl

a0 2 B

5000
S0ED
50F0
5100
5110
5120

E1an

01 2 3 4 5 66 7 8 % ABCTUDEF
BL 03 00 00 00 OF C2 Ca& 02 83 C2 04 83 C2 04 83
C2 04 23 C2 04 83 C2 04 23 C2 04 83 C2 04 B3 C2
04 23 C2 04 23 C2 04 23 C2 04 23 C2 04 83 C2 04
83 Cz 04 83 CZ 04 83 CZ 04 83 CZ 04 233 CZ 04 83

012345678 59ABCDETF

C2 04 83 C2 04 83 C2 04 83 C2 04 83 C2 04 E5 1D | E

CEFFFFOCCCCCCCCCCCCCCCCCCCCcCCccocce

33 ®C £2 £7 © Y 1 ®C Do o0 a0 a0 on

tggititiiiiii

= o nroar s

Disasm: .rdata General DOS Hdr Rich Hdr File Hdr Optional Hdr Section Hdrs Exports Imports)
+

Offset Name Func. Count Bound? OriginalFirstThun TimeDateStamp Forwarder NameRVA
6CF1C WINSPOOLDRY 1 FALSE GCFFS 0 0 6D01E
6CF30 W52_32.dll 1 FALSE BLH00 0 0 BO02C
6CF44 ole32.dll 1 FALSE 60008 0 0 6004C
6CF38 USER32.dII 1 FALSE BCFFD 0 0 60068
BCFGC KERMEL32.dll] FALSE BCFCC 0 0 6D0E4
BCF30 ADVAPIZZ.dII 3 FALSE BCFBC 0 0 60126
WINSPOOL.DRY [1 entry]

Call via Mame Ordinal Criginal Thunk Thunk Ferwarder Hint
803C EnumFormsW - e0010 e0010 - 4

[Figure 3]: Triage information about the sample

This sample, like other Dridex samples, has anti-debugging tricks to delay the malware analysis. Here you
have a list of options to unpack the sample:

Using x64dbg with ScyllaHide plugin (used against anti-debugging techniques) and setting well-
known breakpoints (check the first and second articles from this series).

Using OllyDbg with StrongOD or Phantom plugins (they are used against anti-debugging
techniques) and setting up well-known breakpoints (check first and second articles from this series).
Using hollows_hunter: https://github.com/hasherezade/hollows hunter

Using pe-sieve: https://github.com/hasherezade/pe-sieve
Using UnpacMe service from OAlLabs: https://www.unpac.me/

To use hollows_hunter tool, one of the suggested syntax is: hollows_hunter64.exe /pname rundli32.exe

/loop

Regardless of the process you chose to perform the unpacking process, likely you will get two binaries:

SHA 256: 45feffe2ffb4cccObe7a9f83dff63872fd2cf0f2e73294437e129049¢311e6e7 (DLL)
SHA 256: d5d8e409720272563108e7a665d8d7d2fadc773efdd260b85d3424e35618b963 (DLL)

The first one is really small (about 9 KB), but the second one has about 132 KB and it will be our target.

7|Page

https://github.com/hasherezade/hollows_hunter
https://github.com/hasherezade/pe-sieve
https://www.unpac.me/

https://exploitreversing.com

o+
Offset Mame Func, Count Bound? CriginalFirstThun TimeDateStamp Forwarder MNameRVA
1CC38 KERMEL32.dlI 15 FALSE 1CC90 0 0 1CDEC
1CCAC USER32.dII 1 FALSE 1CCDO 0 0 1CEDB
1CCED ADVAPI32.dII 1 FALSE 1CCRE 0 0 1CE24
KERMEL32.dIl [13 entries]
Call via Mame Crdinal Original Thunk Thunk Forwarder Hint
14008 LCMapStringA 1CCFE TTEIFCI0 - 384
1ADDC IsBadReadPtr 1CDOE 77E1BEB3 - 35E
14010 HeapValidate 1CDIE TTE2304D - 33B
1ADN4 GetString Typed 1CD2E TTE1BD95 - 202
14018 GetStartuplnfol 1CD40 77DETE1D - 2BD
1401C GetLocalelnfol 1CD52 TTE1B5C3 = 252
14020 LoadLibrary4 1CCEE TTEZDEAS - 3A5
14024 GetConsoleCutputCP 1CD7C TTE35343 - 1F2
1A023 FreeEnvircnmentStringsa 1CDe2 TTE3CBR2 - 19C
TADZ2C FlushFileBuffers 1CDALC TIE18T3F - 192
14030 DebugBreak 1CDC0 TTET0385 - FB
14034 CreateFiled 1CDCE TTEZECA1 = BA
[Figure 4]: PE Bear: imported functions
Disasm General DOS5 Hdr Rich Hdr File Hdr Optional Hdr Section Hdrs B Exports B Imports
Offset Mame Value Meaning
1C94A0 Characteristics 0
1C9A4 TimeDateStamp FFFFFFFF Sunday, 07.02.2106 06:28:15 UTC
1C0A2 MajorVersion 0
1C9AA Mincriersion 0
1C0AC Marne 1CA2C mshtrnled.dll
1C9E0 Base 1
1C964 MNumberOfFunctions 5
1C9B8 MNumberOfMNames 5
1C9BC AddressOfFunctions 1C9CE
1C9C0 AddressOfMames 1C9F0
Exported Functions [5 entries |
Offset Ordinal Function RVA Mame RVA Mame Forwarder
1C9C3 1 12508 1CA39 DlliCanUnloadM...
1C9CC 2 13A1B 1CA49 DlEnumClassO...
12300 3 15F64 1CASD DllGetClassObject
1C904 4 21C8 1CABF DllR.egisterServer
1C908 5 TRET 1CAZT DllUnregisterSer...

[Figure 5] PE Bear: exported functions

Interestingly, this DLL’s name (mshtmled.dll) has been also viewed in other Dridex samples and, in a
general way, there’re few changes among them.

Further and valuable information can also be collected by using capa.exe (its standalone version) as shown
below (the sample was renamed to mas_7_unpacked.bin):

8|Page

https://exploitreversing.com

C:\Users\Administrador\Desktop\MAS\MAS_7>capa mas_7_unpacked.bin

Loading : 1% | NN |
matching: 1ee% | IIINIGEGEEEEEE | 272/272 [00:07<00:00, 38.20 functions
e +
| md5 | 1d2ua6c36F320b3b87c6e61al0buTu32

| shal | co6Ub3e1b807331fba9321a6926UU37bcd080T76F

| sha2s6 | d5d8eu®9720272563108e7a665d8d7d2falcT73efdd260b85d3U21Ue35618b963

| os | windows

| format | pe

| arch | i386

| path | mas_7_unpacked.bin

e e
b

DEFENSE EVASION

DISCOVERY
EXECUTION

+————+ — +

ANTI-BEHAVIORAL ANALYSIS

CRYPTOGRAPHY

DATA

DEFENSE EVASION

6U-bit execution via heavens gate (3 matches)
reference anti-VM strings

reference Base6d string

encode data using XOR

encrypt data using RCU KSA

encrypt data using RCU PRGA

contain a resource (.rsrc) section

get process heap force flags

access PEB ldr_data (2 matches)

parse PE header

resolve function by parsing PE exports (3 matches)

Obfuscated Files or Information T1827
Virtualization/Sandbox Evasion::System Checks T1497.001
Process Discovery T1057

Shared Modules T1129

Virtual Machine Detection [B88O9]

Encrypt Data::RC4 [CO027.009]

Encryption Key::RCU KSA [CP828.002]

Generate Pseudo-random Sequence::RC4 PRGA [CP021.004]
Check String [Cee19]

Encode Data::Base6d [CO0O26.001]

Encode Data::XOR [CPP26.002]

Disable or Evade Security Tools::Heavens Gate [Feeed.ees]

—_——————— — + — ¢

NAMESPACE

|

| anti-analysis/anti-disasm

| anti-analysis/anti-vm/vm-detection
| data-manipulation/encoding/basesu
| data-manipulation/encoding/xor

| data-manipulation/encryption/rcu
| data-manipulation/encryption/rcu
| executable/pe/section/rsrc

| host—interaction/process

| linking/runtime-linking

| load—code/pe

| load-code/pe

[Figure 6]: Malware profiling using Capa

From the output above, quite important items are:

= Detects virtual machine

= Uses RC4 algorithm

= Tries to disable security tools

= Information can be obfuscated
= Gets process heap force flags

= Parses PE header

Obfuscated Files or Information::Encoding-Standard Algorithm [E1827.me2]

We have enough information to proceed to the reversing engineering stage using IDA Pro, when we will try
to understand few points of this malware sample.

9|Page

https://exploitreversing.com

7. Reversing

Dridex is a strange malware that demands our attention since beginning to understand what’s really
happening. As the unpacked sample is a DLL, so there are one or more exported functions and, of course,
our first step is trying to understand which one we should or not to follow. Listing the possible entry points
(CTRL+E), we learn that, in this case, there are five exported functions (potential entry points):

Mame Address Ordinal
#| plicanUnloadiow 00592508 1

f| DIEnumClassObjects 00593418 2

i | DliGetClassObject 00535F64 3
DllRegisterServer 005821C8 4
1f| DlUnregisterServer D05SB7FB7 5

| Lined of 5
Ok Cancel Search Help

[Figure 7]: Exported functions and possible entry points

We must walk slowly here because the malware’s author might be misleading us and, eventually, one or
more than these functions might be fake exported functions. Additionally, names might not be what we
are expecting, so we have to check up all functions and trying to find how to begin the analysis.

My first suggestion for readers is for configuring the decompiler to show values in hexadecimal instead of
decimal to accelerate analysis. This task can be done by going to Edit | Plugins | Hex-Rays Decompiler |
Options and make the change “Default radix” to 16, as shown below:

|
Variable definition color
Function bedy color

Marked function color

Comment indent
Block indent

Right margin

120

Analysis options 1

Warnings 1

Warnings 2

DEFALLT
DEFALLT

w Default radix 16 w
R Max strlit len 4094 R
A Max commas 3 w
Analysis options 2 Analysis options 3

Warnings 3 Warnings 4

| To modify default options, please edit hexrays.cfg

oK Cancel

[Figure 8]: Hex-Rays Decompiler

10| Page

https://exploitreversing.com

Next step, as usual, we must perform the entire decompilation of the binary to force the IDA Pro to show
us the best representation of the pseudo code. To do it: File | Produce File | Create C File... Pay attention
to this detail here: eventually, we have to do it again later.

Opening the sample, we can see a bunch of routines’ calls and, as expected, it attracts our attention:

1 HRESULT _ fastcall sub 581888(int *al, DWORD *a2)

2 {

3 // [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]
4

5 w2 = al;

6 sub 58BF3C{(int)v28, (char *)8x1D, 21[71);

7 sub_58C494((int)v22, (int)v28[e]);

8 sub S8DFA4(v20);

9 if (sub_58C9CB(v22, v2, @))
10
11 sub_58F584(v21, 8);

12 sub_58F584(v18, 0);
13 sub_58F584(v19, 0);

14 Vs o= w2 + 3;

15 if (1v2)

16 Vs = @;

17 if (sub_58C280(v5, (int)v2))

18 sub_58FCAA(v2, (int *)Ox1FFFFF);
19 VB = w2+ 3;

20 if (1v2)

21 V6 = 8;

22 V7 = *ub;

23 sub_58CDB4((char *)v23, 8);

24 sub_5812DC(v15, v7, (int)v23, a2);
25 if (LOBYTE(vis[e]))

26 {

27 v3 = sub_58FB5C(v2);
28 v9 = &unk_59A6(0;

29 if (v == 8x28)

30 v9 = &unk_59A060;

[Figure 9]: sub_581000 routine

Unfortunately, things get complicated quickly. For example, go into sub_58C9C0 - sub_592518 and you
will find something like:

1 HANDLE _ usercall sub 592518@<eax>(int al@<ecx>, int *a2@<esi:)
2 {

3 HANDLE result; // eax

4

5 if (lal)}

6 return MtCurrentTeb()-»ClientId.UniqueThread;

7 result = (HANDLE)sub_59306C(@xSES44D1E, Ox333A3BAF, 22, @xBES44D1E, ©xSES44DIE);
8 if (!result)

9 return @;
18 _ debugbreak();
11 debugbreak();
12 return result;
13 1

[Figure 10]: sub_592518 routine

11| Page

https://exploitreversing.com

There’re interesting points here:

= sub_59306C(0x8E844D1E, 0x333A3BAF, a2, 0x8E844D1E, 0x8E844D1E);
= two calls to __debugbreak();
= astrange return in the middle of the code, besides the second one at the final.

Before continuing, it is recommended to load additional Type Libraries (SHIFT+F11) as we have done in
previous articles: ntapi_win7 (likely, mssdk_win7 is already loaded). At the same way, | suggest you
loading additional signatures (SHIFT+F5): vc32ucrt, vc32rtf, ve32mfc, vc432_14 and pe. Please, readers
should realize that, as this sample seems to be obfuscated and the control flow is also messed up, so
probably these new signatures will not get effective. However, it does not matter because in most cases all
these new signatures and libraries will help us, so it’s interesting to get used to loading them.

The assembly code of the pseudo code shown in Figure 10 follows below:

.text:08592518 ; HANDLE _ usercall sub 592518@<eax>(int@<ecx», int F@<esis)

Ltext:808592518 sub 592518 proc near ; CODE XREF: sub 58C9C8+6Tp
Ltext: 88592518 push ebx

Ltext: 88592519 mow ebx, ecx

Ltext:8859251B test ebx, ebx

Ltext:808592510D jz short loc 592530

Ltext:8859251F mow eax, SE844D1Eh

Ltext 88592524 mow edx, 333A3BAFh

Ltext: 88592529 push eax

Ltext:80592524 push eax

Ltext: 88592528 call sub 59386C

Ltext: 88592538 test eax, eax

.text:88592532 jz short loc_592539

.text:80592534 push ebx

Ltext: 88592535 int 3 ; Trap to Debugger
Ltext: 88592536 int 3 ; Trap to Debugger
Ltext: 88592537 Jjmp short loc_592543

dextiBB592530 ;-
Ltext: 88592539

.text:8e592539 loc_592539: ; CODE XREF: sub_592518+1AT]
.text: 88592539 xor eax, eax
.text: 88592538 jmp short loc 592543

e Y T | e e e
.text:@8859253D

Ltext:BB59253D loc_59253D: ; CODE XREF: sub_592518+51]

2
.text:80859253D mow eax, large fs:24h
Ltext: 88592543
.text:8e592543 loc_592543: ; CODE XREF: sub_592518+1FT]
.text:Be592543 ; sub_592518+231]
.text: 88592543 pop ebx
Ltext: 88592544 retn

text:00592544 [N e

Ltext: 88592544
B L Ly L B e e i
.text: 88592545 align 4
[Figure 11]: sub_592518 Assembly code
12| Page

https://exploitreversing.com

As mentioned in the previous page, the first point to comment is about the following subroutine call:

= sub_59306C(0x8E844D1E, 0x333A3BAF, a2, 0x8E844D1E, 0x8E844D1E);

Initially, and based on previous articles (remember Quakbot and Emotet in second and third articles of this

series), we can make few guesses:

= sub_59306C() is a function that is responsible for the hashing resolving task.
= An educated guess is that one of these hashes is a DLL hash and the other one is an API hash.
= There could be or not a XOR key involved with the hashing procedure.

If sub_59306C() is a hash resolving function, so it will be called many times and the fastest way to learn
about it is list all cross-references (X hotkey) as shown below:

F |
[xrefs to sub_59306C O
Directic Type Address Text
@ Up p sub_590210+11 call sub_5930&8C
@ Up p sub_590210+5E call sub_5930&8C
Eup p sub_590210487 call sub_59306C
@ Up p sub_5903A0+22E call sub_5930&8C
@ Up p sub_590730+56 call sub_5930&8C
@ Up p sub_5907304C2 call sub_5930&C
@ Up p sub_590730+10E call sub_5930&8C
@ Up p sub_590730+415 call sub_5930&8C
@ Up p sub_590730+461 call sub_5930&C
@ Up p sub_590730+40D call sub_5930&8C
@ Up p sub_590730+544 call sub_5930&8C
@ Up p sub_590730+45BD call sub_5930&C
@ Up p sub_590730+60E call sub_5930&8C
@ Up p sub_590730+4720 call sub_5930&8C
@ Up p sub_590730+479F call sub_5930&C
@ Up p sub_590730+7D4 call sub_5930&8C
@ Up p sub_590FD4+F call sub_5930&8C
@ Up p sub_S90FF3+14 call sub_5930&C
Eup p sub_591030+19 call sub_5930&8C
@ Up p sub_591030+3D call sub_5930&8C
@ Up p sub_5910A4+1E call sub_S59308C
Eup p sub_5910A4+54 call sub_5930&8C
@ Up p sub_5910A4+B5 call sub_5930&6C
@ Up p sub_5910A44ED call sub_S59308C
Eup p sub_5910A4+114 call sub_5930&8C
@ Up p sub_591258+438 call sub_5930&8C
@ Up p sub_5912EC+38 call sub_S59308C
Eup p sub_59143C+FF call sub_5930&8C
@ Up p sub_59143C 4666 call sub_5930&8C
@ Up p sub_591034+AB call sub_S59308C
= up p sub_591034+124 call sub_5930&8C
@ Up p sub_591D34+3A4 call sub_5930&8C
@ Up p sub_5920F4420 call sub_S59308C
= up p sub_5921F0+18 call sub_5930&8C
@ Up p sub_592234433 call sub_5930&8C
@ Up p sub_5922804+15 call sub_S59308C
= up p sub_5923C3+3E call sub_5930&8C
= up p sub 59246C+3E call sub 59306C

| Line 10f 59

[Ok Cancel Search Help

8 — —— ———— —

[Figure 12]: sub_59306C being called 59 times

13| Page

https://exploitreversing.com

We seem to be in the right way, but we need to examine the function because this routine could be a

wrapper. Additionally, there could be additional hash resolving functions.

Anyway, we can rename it temporarily to ab_maybe_hash_resolving and, after we have confirmed its
working, so we rename it again. Going inside it, we find sub_59306C that shows us the following:

1 int _ userpurge sub_59386(@<eax>(int al@<eax>, int a2@<edx>, int *a3@<esi:, int a4, int a5)
24

3 int result; f/ eax

4 int v8; // eax

2

6 result = sub_598384(=22, 1);

7 if (lresult)

8 {

9 if (2l != Bx39731522
18 && ((v8 = sub_591D34(al, 21)) !'=@ || (unsigned
11 {
12 return sub 59143C(vE, a2, a3, v8, vd);
13 }
14 else
15 {
16 return @;
17 }
18 }
19 return result;
20 }

[Figure 13]: sub_59306C routine

Moving into the sub_590304 routine, we have the following scenario:

1 int _ fastcall sub 598384(int al, char a2)
2 {
3 int wv3; // ecx
4 int vw5; // edx
5 int result; // eax
6 int v7; // ebp
7 int v8; // edx
8
9 w3 = dword_59D288;
16 if ({ dword_59D288 == BxC55649E1)
11 f
12 vi o= 8;
13 dword_590288 = 9;
14}
15 switch (al)
16 |
17 case Bx1C6EF387:
18 w5 = dword 59D28C;
19 if (dword _59D28C == BxFBI89IESE)
28 break;
21 return v5;
22 case Bx45B68B68:
23 v5 = dword_59D218;
24 if (dword_59D21@ != @8xBBSBCOY9BE)
25 return v5;
26 break;
27 case Bx2EA9GE2A:
28 v5 = dword_59D214;
29 if (dword_59D214 != 8x4C71E88D)
38 return v5;
3] break;
32}

[Figure 14]: sub_590304 routine

 int8)sub_5983A8(z1, (int)a3) && (v8 = sub 591D34(zl, a1)) != @))

14| Page

https://exploitreversing.com

Taking line 9 (Figure 13) and lines 10, 19, 24, 29 (Figure 14) comparisons with hexadecimals remind me the
context of Emotet, where we have control-flow flattening (check for the third article of this series), so
readers might assume that, apparently, there’s a potential obfuscation applied to the code.

This time is not so critical to be so precise and, for now, we can say that this sample is using obfuscation
and, in special, a form of control-flow flattening. Anyway, it isn’t what we are looking for. Examining
sub_591D34, which accept two equal arguments, we have as 30 first lines the following content:

1 void *_ _userpurge sub_591D34@<eax>(int al@<eax>, int a2}

2 4

3 ' [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]
il

5 w3 = dword 59D021C;

6 if (dword_59D21C == @xFACH4A91)

7 A

8 vl o= B;

9 dword_59D21C = @;
18 3}
11 if { 21 == Bx68A28C5C)
12 {
13 result = (void *)dword 590220
14 if (dword 5902208 != Bx248DF168)
15 return result;
16 ProcessEnvironmentBlock = NtCurrentTeb()-»ProcessEnvironmentBlock;
17 if (w3)
18 goto LABEL 29,
19 1}
28 else
21 {
22 ProcessEnvironmentBlock = NtCurrentTeb()-»ProcessEnvironmentBlock;
23 if (2l == 8x39731522)
24 return FProcessEnvironmentBlock->ImageBasefddress;
25 LABEL_13:
26 if (w3)
27 {
28 if (a2l == @xA731522)
29 {

39 for (1 =8; ; i += wvdd)

[Figure 15]: sub_591D34 routine

Obviously, this sub_591D34 routine is parsing the _PEB structure and PE structures and, when these
operations happen in a context as this one that we are analyzing (within of a call like
ab_maybe_hashing_resolving(0x8E844D1E, OxFOD6C1FF, a2, 0x8E844D1E, 0x8E844D1E)), so we can
assume that DLL and/or API hashing resolutions are involved, as we suspected previously. If readers want
to improve the presented code, so it’s necessary to add the following standard structures:

= _PEB
= _PEB_LDR_DATA

= _LDR_DATA_TABLE_ENTRY
= _|IMAGE_DOS_HEADER

15| Page

https://exploitreversing.com

_IMAGE_NT_HEADERS
_IMAGE_OPTIONAL_HEADER
_IMAGE_SECTION_HEADER
_IMAGE_DATA_DIRECTORY

We should not be concerned if we are going to use or not all these added structures, but if we need them,
so they will be already available. Examining sub_591D34 routine, which it’s exceptionally long, certainly we

will find interesting pieces of codes. For example, take a look at the while loop on line 175:

175 while (counter 1 <= Length);

176 vl8 = Length == 8;

177 V20 = 8;

178 if (vl)

179 {

188 w2l = 8;

181 do

182 {

183 v22 = *(char *)(Buffer + 2 * v20);

184 w33 = v21;

185 if ((unsigned int)(v22 - 8x4l) <= 8x19)
186 v22 = (char){v22 + B8x28);

187 vidl[v2a] = v22;

188 if (1v22)

189 break;

198 ++v2l;

191 +v2@;

192 }

193 while (v33 + 1 « Flink-»BaseDl1lMName.Length);
194 }

195 if (al == (sub_S94FFC{v4l, wv28) ~ BxE462D021C))
196 break;

197 if (Flink == (LDR_DATA_TABLE_ENTRY #)vw35[@])
198 return (void *)D11Base;

199 Flink = Flink-»InlLoadOrderlinks.Flink;

200 T

2081 D11Base = (int)Flink-»>D11Base;

202 if (!Dl1Base)

283 return (void *)D11Base;

284 goto LABEL_43;

285 T

286}

[Figure 16]: sub_591D34 routine: a small piece of code

The malware’s author is concerned to normalize case of the DLL name to lowercase as readers can verify
on lines 185 and 186. Additionally, there is a remarkably interesting point which we are talking about in
next pages: there is an XOR operation on line 195 and, according to past experience, we already know that
this value (0xE462D21C) will be particularly important during the process of hash resolving. Finally, in this
code, | only altered the types of Flink and Blink to LDR_DATA_TABLE_ENTRY * by using “Y hotkey”, and

this minor change brough us a bit more of context.

Returning to sub_5906C (Figure 13), let’s examine the sub_59143C routine (line 12). From this point
onward and assuming you know about the PE structure, a minimal work of changing variable types (Y
hotkey), renaming variables (N hotkey) by using these mentioned types and adding the MACRO_IMAGE

enumeration, we have the following result:

16| Page

https://exploitreversing.com

1 char * userpurge sub 59143C@<eax>(int al@<eax>, char *aZ@g<edx>, int *a3@<esi», int ad, int a5)
2 {

3 // [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]

4

5 w7l = a3,

6 result = (char *)sub_598384((int)a2, 1);

7 if (lresult)

8 {

g ved = @;
1@ if (dword_59D288 && !byte 59D2E4)
11 1
12 ve5 = 8;
13 byte 59D2E4 = 1;
14 sub_G5BFLB4(vE6, B8);
15 sub S58F584(v94, Bx1C);
16 w72 = (signed int *)sub S58F4BC(v94, 8);
17 Ldr = NtCurrentTeb{}->Proce55EnvironmentBlock->Ldr;
18 S5link = Ldr-»InloadOrderModulelist.Blink;
19 Flink = Ldr-»InlLoad0OrderModulelist.Flink;
20 Blink_1 = Blink;
21 while (1)
22 {
23 011Base = Flink-»>D11Base;
24 vel = @;
25 ptr_nt_headers = (_IMAGE NT_HEADERS *)((char *)D1lBase + DllBase-»e_lfanew);
26 sub 58F584{ 52, 8);
27 Sizel _u;hl“ﬂ—lkf:Lf = ptr_nt_headers-»FileHeader.51ze0f0OptionalHeader;
28 Mum 5 s = ptr_nt_headers-»FileHeader.Number0fSections;
29 H,u;_ -' s_1 = Number0OfSections;

38 ptr_image section _header = {_ IMAGE SECTION_ HEADER #*)((char *)&ptr nt_ headers-»>0ptionalHeader
31 + Size0fOptionalHeader);
32 if (NumberOfSections)

33 1

34 vl2 = 8;

35 do

36

37 if ((ptr_image section_header-»Characteristics & IMAGE_SCN_MEM EXECUTE) != 8)

[Figure 17]: a first piece code code from sub_59143C after a minimal work

This function is huge (more than three hundred lines of pseudo code) and even without analyzing the
entire routine, we can understand that the call for sub_59306C(0x8E844D1E, 0x333A3BAF, a2,
Ox8E844D1E, 0x8E844D1E) is performing PE parsing to perform a possible API hashing task. There’re other
points to be checked, but that’s enough for now.

At the same function (sub_59143C), there is a small trick: on line 222 we seen the same XOR operation we
mentioned previously, so we could go a little further and to examine a new piece of code. Before
proceeding, return to sub_59143C signature:

= char *__userpurge sub_59143C@<eax>(int al@<eax>, char *a2@<edx>, int *a3@<esi>, int a4, int
a5)

The fourth and fifth parameters (I will rename them to arg_4 and arg_5) aren’t being used. Furthermore, |
will also rename the first two arguments to ptr_dll and ptr_api_name respectively (names could be better).
This behavior using one or more fake arguments for a routine is a well-known resource used by

17| Page

https://exploitreversing.com

obfuscators and protectors in general. About the name, they might be not precise, but we can u
them later just in case we need to do.

pdate

At the same way we did previously, it is necessary to re-type (Y hotkey) and rename (N hotkey) all possible

variables to get a reasonable result as shown in the next figure:

225 if (ptr_dll)

226 1

227 ptr_nt_headers_1 = *(ptr_dl11 + 8x3C);

228 otr export = *(&ptr nt headers 1-»0ptionalHeader.DataDirectory[8].VirtualAddress
229 + ptr_dll);

238 size table = (ptr_export

231 + *(&ptr nt headers 1-»0ptionalHeader.DataDirectory[B].5ize
232 + ptr_dll});

233 AddressOflames = (ptr_dll + *(&ptr_export-»AddressOfNames + ptr_dl1l)});
234 AddressOfNameOrdinals = (ptr_dll

235 + *(&ptr _export-»AddressOfNamelrdinals + ptr dll1));
236 if (*(&ptr _export-sNumberOfNames + ptr dll))

237 {

238 counter 2 = @;

239 api_hashed = w71l ™ @xE462D21C;

248 while (1)

241 {

242 counter_3 = @;

243 ptr_address_of names = (ptr_dll + *AddressOflames);

244 LOBYTE(ptr_address_of _names_1) = *ptr_address_of_names;

245 if (ptr_address _of names 1)

246 1

247 do

248 {

249 ptr_names = ptr_address of names[++counter 3];

258 *(&ptr_address_of _names_1 + counter_3) = ptr_names;

251 ¥

252 while { ptr_names);

253 T

254 target_api_hash = sub_S94FFC{&ptr_address_of names_1, counter_3);
255 if (target_api_hash == api_hashed)

256 break;

257 ++AddressOfllames;

253 ++AddressOfiNamelrdinals;

259 if (++counter 2 »= #*(&ptr export-»NumberOfNames + ptr dl1))

268 goto LABEL_79;

261 T

262 ptr_function = 8;

263 addr_rva_next function = *(ptr_dll

264 + *(&ptr export-»AddressOfFunctions + ptr dll)
265 + 4 * *lddressOflameOrdinals);

266 if (addr_rva_next function < ptr_export

267 || addr_rva_next function >= size table)

268 1

269 addr_function = addr_rva_next_function + ptr_dll;

278 ptr_function = addr function;

271 T

[Figure 18]: sub_59143C (second part)

Now, our point of interest is the line 239:

= api_hashed = api_hash_name * 0xE462D21C (previously api_hashed = v71 A 0xE462D21C)

18| Page

https://exploitreversing.com

Clearly the API hash value, which is a representation of the API’'s name, is being XOR’ed with a constant
that works as a XOR key. Actually, this behavior is common and similar to other malware families, and we
have to pay attention and consider this value when we will be trying to use any plugin to accelerate the API
hash resolving process.

Certainly, a question that many readers might be would be: “Do I have to follow this procedure of analysis
only to find the XOR key?”. No, you don’t.

One of the quickest (and certainly dirty) way to find the XOR key (if there is one) is by using the search
resource of IDA Pro to look for all XOR operations and, likely, if you find a repetitive XOR operation using
the same immediate value, so probably it is the XOR key that you are looking for.

Thus, to perform the search operation for XOR instructions, jump to the Assembly view (IDA View). From
there, go to Search = Text and type ‘ xor *’ (of course, you can try a real regular expression) and you will
receive an output like the following one:

et 0058FF7A sub_S3FDED wor eax, 0E462D21Ch
text:00590167 sub_530130 wor eax, 0E462D21Ch
Jtext:005919ES sub_59143C xor eax, 0E462D21Ch
Sext:00591F71 sub 531034 wor eax, 0E462D21Ch
text:00598FCE sub_5358EBC wor eax, 0E462D21Ch
Jtext: 00535046 sub_595038 wor eax, [ecx+ebp®4]

[Figure 19]: searching for XOR key
The same immediate value has been used over five places, so it is probably the XOR key: 0xE462D21C.

So far we identified that the code is using DLL/API hash resolving, but there are other pending questions
related to this specific point: what’s the algorithm used over this hashing operations? To find a possible
answer, it is time to focus our analysis on any location that is involved with the XOR key that we showed
above. For example, readers could try to examine the second one at 0x00590167, as shown below:

1 int _ usercall sub 598138@<eax:>{int al@<ecx>, BYTE *al@«esi:)

2 {

3 // [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]
4

5 w7[1] = a2;

6 wi[B] = a2;

7 result = *(al + 8x30C);

8 if (!result)

9 {

18 vA = sub_598188(=1);

11 sub_SBE@6C(v4, v7);

12 vs = v7[0];

13 vb = sub S8EBAB(v7[0], Ox7FFFFFFF);

14 *(21 + Bx3C) = sub_S594FFC(v5, v6) » BxE462D21C;

15 sub_58DFAL(v7);

16 return *{al + 8x3C);

17}

18 return result; [Figure 20]: Function involved with the found XOR key
19 }

Once again, there is a series of routines being called, but sub_594FFC routine seems to be more interesting
because it is used and xor’ed against the XOR key. Of course, if readers have a spare time, so it would be
amazing to analyze the other routines too. Examining the sub_594FFC routine, we have:

19| Page

https://exploitreversing.com

1 int _ fastcall sub_S594FFC(_BYTE *al, int a2)

2 {

3 char *i; // edi

4 char v6[1836]; // [esp+8h] [ebp-48Ch] BYREF
2

& for (i = dword_59D248; !word_59D2F@; sub_5958BB(1))
7 {

8 if (1 1= Bx774C488D)

9 return sub_595888(i, al, 22);

10 if (!sub_593864(8x39731522, Ox45B68B68))
11 break;

12 i = sub 59361C();

3 dword_590248 = i;

14 1}

15 sub_595@B8(v6);

16 return sub 595888(v6, al, a2);

17 }

[Figure 21]: sub_594FFC routine

Apparently there is nothing here, but not so fast. Pay attention to the for loop on line 6, which is using two
DWORD'’s and one routine sub_5950B8(). The first DWORD (dword_59D248) is referred by two pieces of
code and one of them is responsible for writing such double word. Readers can find both addresses by
using CTRL+X hotkey. Moving into sub_5950B8() we have:

1 int _ thiscall sub_5958B8(char *this)

2 {

3 // [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]
4

5 vl = e

6 w2 = _mm_loadu_sil28(&xmmword 59BF38);

7 w3 = _mm_loadu_sil28(&xmmword_59BF48) ;

& w4 = _mm loadu_sil23(&xmmword 59BF58);

9 w5 = _mm_loadu_sil28(&xmmword_59BF68) ;
18 do
11 {
12 Ve = v3;
13 LOBYTE(result) = 8;
14 do
15 {
16 LOBYTE(result) = result + 1;

17 v8 = _mm_cmpeq_epi32{_mm_and_sil28(v4, vb), Bied);
18 vd = _mm_srli_epi32{v6, 1u);

19 viB = _mm_xor_sil28(vE, -1i64);

28 vh = _mm_or_sil28(

21 _mm_and_sil28(mm_xor_sil28(v9, v5), v1@),
22 _mm_andnot_sil128(v16, v9));

23 }

24 while (result < 8u);

25 *gthis[4 * vi] = v6;

26 vl += 4;

27 v3 = _mm_add_epi32(v3, v2);

28 1}

29 while (vl < Bx188);

Ji . return result; [Figure 22]: sub_5950B8 routine

At first, results do not seem to be so relevant, but we found constants being used and related to multiple
operations. Actually, it is really a great news because constants are valuable to identify cryptography
algorithms. Therefore, we need to examine what are these constants:

20| Page

https://exploitreversing.com

‘data:
‘data:
‘data:
‘data
‘data:
‘data:
‘data
‘data:
‘data:

BE559BF38 xmmword_59BF38 xmmword 48828888240008888400800884h0

B859BF 38 ; DATA XREF: sub_5958B3+21
BE559BF4E8 xmmword_59BF48 xmmword 3E888888020002888100000888hH

:B859BF48 ; DATA XREF: sub_5958B8+Etr
BE559BF58 xmmword_59BF58 xmmword 1E8828888810222888100800881h0

Be59BF5E ; DATA XREF: sub_5958B8+16tr
(BB59BF68 xmmword_59BFEB xmmword BEDBES328EDBES8328EDBES5328EDES5328

B859BF 68 ; DATA XREF: sub_

BES9BF7E byte 59BF78 db 4Eh ; DATA XREF u

[Figure 23]: Crypto constants

Initially there is nothing really useful again, but pay attention to the last constant:

OEDB88320EDB88320EDB88320EDB88320

Let me show the same line again, but this time using colors:

0EDB88320 EDB88320 EDB88320 EDB88320

The same 4-bytes hexadecimal is repeated four times. Searching for this hexadecimal constant on the
Internet, readers are going to quickly confirm that it is related to CRC32 algorithm
(https://en.wikipedia.org/wiki/Cyclic redundancy check):

CRC-32

IS0 3309
(HDLC), ANSI
X3.66 (ADCCP)
FIPS PUB 71,
FED-STD-1003,
ITU-T V.42,
ISC/IEC/IEEE
B802-3
(Ethernet),
SATA, MPEG-2,
PKZIP, Gzip,
Bzip2, POSIX
cksum, 53!

PNG P4
ZMCODEM, many
others

0x04C11DB7 OXEDB88320 0xDB710641 0x82608EDB!®

i i ot o A B e B o L S A R o |

[Figure 24]: CRC32 constants (from Wikipedia)

Finally, we found the algorithm being used by the sample to generate all hash values that are used by the
malware to encode its APl and DLL names. Therefore, until now, we could confirm the following facts:

The malware is using APl / DLL hashing.
There is a XOR key being used in the hashing procedure: 0xE462D21C
The algorithm being used to calculate the hash is CRC32.

Certainly, they won’t be the only obstacles that we will have to manage in our analysis.

The next point is to understand the strange objective of “int 3” (__debugbreak()), which is being used
over multiple places in the malware’s code. First, we have to pick up an example of pseudo code to
analyze and try to have a better comprehension about what is really happening:

21| Page

https://en.wikipedia.org/wiki/Cyclic_redundancy_check

https://exploitreversing.com

1 int sub_593628()

2 {

3 int result; [/ eax

4 int (_ _cdecl *v1)(int, _DWORD, DWORD, DWORD, DWORD, DWORD); // ebx
]

6 if (dword_59D228 == @xA33C83E5)

71

8 vl = sub_593864(Bx6BA2BC5C, Bx1CEEF387);

9 dword_59D022C = sub_593864(8x68A28C5C, @x5EBAFAAT);
18 if (dword_59D228 == BxA33CB3ES5)

11 dword_59D228 = v1(2, &, @, @, @, 8);

12 %

13 result = sub_5930864(Bx6BA28C5C, Bx45B68BRS);

14 if ('result)

15 return @;

16 debugbreak();

17 debugbreak();

18 return result;

19 }
[Figure 25]: Sub_593628 routine: pseudo code

Although we have not discussed any technique to resolve hashes (it will be done in next pages), we can do
a fast analysis about what is occurring in this figure:

= line 6: apparently a status variable is controlling the execution flow. Instructions from line 8 to line
11 will be only executed whether the condition is True. However, there is a detail: if readers check
the dword_59D228’s value in the .data section, it contains initially exactly the sane value used in
the comparison: 0xA33C83ES5.

= line 8 and 9: the hash resolving routine (sub_593064) is being called. On line 8, a function pointer
is returned and stored into v1. In addition, the result of calling the hash resolving routine on line 9
is stored into dword_59D22C and not used at this time.

= line 10: the same status variable and value from line 6 are used one more time.

= line 11: the function pointer is used to invoke the function with 6 arguments.

= line 13: once again, the routine responsible for handling API hash resolving (sub_593064) is called
for the third time.

= lines 16 and 17: the __debugbreak() function is called.

Obviously, there is an evident anti-analysis trick here that was introduced by an obfuscator, but readers
should pay attention to one detail: on line 8, the resolved API’s address is returned, stored into v1 and
then called on line 11, when its result is stored into exactly the same variable dword_59D228. However,
the returned function pointer from call to sub_593064 is loaded into result and, apparently, it is not used
for anything else.

Additionally, the test using “if instruction” on line 14 is weird because whether the calling for sub_593064
is successful (and we can assume it is), so lines 16 and 17 wouldn’t be executed. Finally, both
_debugbreak() calls, which are “int 3”, are called and the resolved API (the function pointer) is returned
to the caller function, but it is not directly called as we saw with v1 on line 11.

Observing the Assembly of sub_593628 routine certainly will help readers to start to understand what
could be happening in this strange piece of code:

22| Page

https://exploitreversing.com

text:00593628 ; int sub 593623()

text:88593628 sub 593628 proc near ; CODE XREF: sub 59361C+41]
text:08593628 ; sub _593958+3Ddp ...
text:B88593628 push esi

text:08593629 push edi

text:0859362A push ebx

text:08593628 mow esi, offset dword_59D228

text:885936368 mow edi, ecx

text:B8593632 cmp dword ptr [esi], BA433C83ESh

text:08593638 —ljz short loc_59365C

text:B@59363A
text:0859363A loc_59363A:
text:0859363A

; CODE XREF: sub_593628+5F4j
; sub_593628+6EL]

text:0859363A push A5B68B68h

text:0@59363F push 68A28C5Ch

text:0@593644 call sub_593864

text:08593649 test eax, eax

text:8859364B8 jz short loc 593656

text:8859364D push edi

text:8859364E push 8

text:06593650 push dword ptr [esi]

text:08593652 int 3 ; Trap to Debugger
text:88593653 int 3 ;3 Trap to Debugger
text:0B593654 [jmp short loc_593658 |

£ext:00593656 ; - ---ooooon
text: 00593656
text:008593656 loc_593656:

text:88593656 xor
text:88593658

text:808593658 |loc_593658:
text:B0593658 pop
text: 80593659 pop
text: 00593654 pop
text:@0593656 retn

; CODE XREF: sub_593628+2371j
eax, eax

; CODE XREF: sub 593628+2Ctj
ebx
edi
esi

TEXTIBB59365C § — - oo

text:8859365C
text:@859365C| loc_59365C: <

text:@859365C push
text:80593661 push
text: 00593666 call
text:0059366B8 mowv
text: 00593660 push
text:00593672 push
text:@0593677 call
text:8859367C mow
text:@0593681 cmp
text:B0593687 jnz
text:B0593689 xar
text:B059368B8 push
text:8059368C push
text:0059368D push
text:8059368E push
text:@059368F push
text:@0593698 push
text:88593692 call
text: 00593694 mowv
text: 80593696 jmp

; CODE XREF: sub_593628+181]
1CBEF387h
68A28C5Ch
sub_593864
ebx, eax
SEQAFAASH
68A28C5ChH
sub_593864
dword_59D22C, eax
dword ptr [esi], BA33C83ESh
short loc_ 593634
eax, eax
eax
eax
eax
eax
eax
2
ebx
[esi], eax
short loc 59363A

text:00593696 |FENENC DS S

text: 80593696
text: 80593693

[Figure 26]: sub_593628 routine: Assembly code

23| Page

https://exploitreversing.com

Clearly both “int 3” instructions shouldn’t be here. This is a well-known anti-analysis trick used to defeat
dynamic and static analysis, and | have seen it (or a variation) over other samples. During a possible
dynamic analysis, the “int 3” instruction will be interpreted as an exception (EXCEPTION_BREAKPOINT),
forcing us to skip it or even passing the exception to the designed exception handlers registered by system,
and it will cause delays to analysts to examine the sample. Nonetheless, it is not our concern here.

About the aspect of the static analysis, both calls for APl name resolution from line 09 and 13 from Figure
25 (pseudo code) are not being really used, apparently. Anyway, we know that after a function’s call, its
result is returned (pushed) into EAX register. Additionally, analyzing the Figure 26, readers can see a kind
of pattern because soon after both “int 3” instructions, where there is a jump to a near location, which do
a quick restoration of non-volatile registers and return. This action seems cause a severe problem in the
disassembler because the block under loc_59365C is only executed if the instruction at 0x00593638 is true,
and inversion in the execution flow cause issues during the disassembling process. Regardless of the
commented side effect, remember that the pointer to the resolved function stored in eax. Therefore, what
is the trick?

In any other place around the code the malware is registering an exception handler to manage an
exception type as EXCEPTION_BREAKPOINT, which is related to _EXCEPTION_RECORD structure, and this
handler likely will be executing the function on the top of stack, which is exactly the same eax’s value that
was pushed to stack previously. At the end, the resolved API will be called and executed. Therefore, we can
assume one int 3 instruction together the exception handler produces an effect as call eax instruction.

To be able to find the exception-related code, it will be easier to handle the DLL and API resolution first
and, afterwards, returning and searching for the code. Of course, we could use just the Assembly code to
track such code if we wanted to, and it would take a bit longer.

About APl hash resolving, we hold the following information so far:

= algorithm: crc32
= xor key: 0xE462D21C
= function associated with hash resolving is sub_59306C

In the other hand, we have the following pending tasks:

= finding where malware has registered the exception handler, and analyzing it to confirm our
assumptions.

= improving the pseudo code and, at the same time, managing a better solution to handle with both
int 3 instructions.

To handle hashing resolving, there are several possibilities and all of them are excellent solutions:

= Shellcode Hashes from flare-ida (Mandiant): https://github.com/mandiant/flare-
ida/blob/master/plugins/shellcode hashes search plugin.py

= Apihashes IDA Pro plugin (from Igor Kuznetsov): https://github.com/KasperskyLab/Apihashes

= HashDb IDA Pro plugin (OALabs): https://github.com/OALabs/hashdb-ida

If readers pay attention to Figure 25, the routine involved with hashes is sub_593064, which accepts two
arguments, but we also found previously the sub_59306C routine that accepts five arguments and also
seems to be related to hash resolution.

24 |Page

https://github.com/mandiant/flare-ida/blob/master/plugins/shellcode_hashes_search_plugin.py
https://github.com/mandiant/flare-ida/blob/master/plugins/shellcode_hashes_search_plugin.py
https://github.com/KasperskyLab/Apihashes
https://github.com/OALabs/hashdb-ida

https://exploitreversing.com

Examining the cross-references (X hotkey) to sub_593064 routine, we found that there is a lot of
references to it:

"

crefs to sub

Directic Type

= up
=] up
=] up
=] up
=] up
=] up
=] up
5= Up
55 Up
=] up
=] up
=] up
=] up
=] up
=] up
5= Up
55 Up
=] up
=] up
=] up
=] up
=] up
=] up
5= Up
55 Up
=] up
=] up
5= up
=] up
=] up
=] up
=] up
5= Up
55 Up
=] up
=] up
=] up
=] up
=] up
=] up
5= Up
55 Up

=] up
e

= = e By [y B o oy e e o I o e o e e s e e o e e o e o e o e o e o e o e e e s o [o e o e e e o e o e o e s e e e e o e o o e o o e o o o |

Address

sub_58120C+41
sub_SE120C+AD
sub_S58120C+10F
sub_S58120C+132
sub_5812DC+169
sub_S81FAC+29
sub_S531FAC+52
sub_532280+70
sub_582280+E3
sub_S58248C+14
sub_58248C+26
sub_5324D4+33
sub_5324D4+79
sub_S582404+A2
sub_532404+CB
sub_532404+F4
sub_532404+144
sub_582404+1BB
sub_582404+1D3
sub_582404+279
sub_S582404+32C
sub_582404+43F
sub_532404+551
sub_532404+530D
sub_S33AE4+C5
sub_584413+1A9
sub_584413+1D6
sub_584D50+694
sub_S857BC+27
sub_585324+23
sub_585824+42
sub_5358 24+BF
sub_535824+4F0
sub_58533445A5
sub_SE6ASC+73
sub_586A9C+B6
DIRegisterserver+4611
sub_S8754C+175
sub_53754C+1B7
sub_537960+280
sub_5333A4+23
sub_533428+106
sub_G583423+1E2

Text

call sub_593054
call sub_593064
call sub_593064
call sub_593064
call sub_593064
call sub_593064
call sub_593084
call sub_593054
call sub_5930564
call sub_593064
call sub_593064
call sub_593064
call sub_593064
call sub_593064
call sub_593084
call sub_593054
call sub_5930564
call sub_593064
call sub_593064
call sub_593064
call sub_593064
call sub_593064
call sub_593084
call sub_593054
call sub_593054
call sub_593064
call sub_593064
call sub_593064
call sub_593064
call sub_593064
call sub_593064
call sub_593084
call sub_593054
call sub_593054
call sub_593064
call sub_593064
call sub_593064
call sub_593064
call sub_593064
call sub_593084
call sub_593054
call sub_593054
call sub_593064

Line 1 of 199

QK Cancel

Wow! This routine is called 199 times! Now we can understand what is happening: this routine

[Figure 27]: sub_593064 routine: resolving hash

Search

Help

(sub_593064) is another hash resolving routine, besides the sub_59306C routine (that one we mentioned

previously, which accepts five arguments), and both use the same internal routines.

25| Page

https://exploitreversing.com

Therefore, we can adopt the following nomenclature to make things easier for us:

= sub_593064: ab_hash_resolving
= sub_59306C: ab_hash_resolving_internal

Most certainly, readers already used Shellcode Hashes from flare-ida project, but | am going to quickly
explain how to set up it and use it in our case:

1. Clone the flare-ida repository: https://github.com/mandiant/flare-ida. In my case, | did it under
C:\github directory.

2. Copy the plugin file (C:\github\flare-ida\plugins\shellcode _hashes_search_plugin.py) to IDA Pro’s
plugin directory, which in my case is: C:\Program Files\IDA Pro 8.2\plugins

3. Copy the entire flare folder (C:\github\flare-ida\python\flare) to IDA Pro’s Python folder
(C:\Program Files\IDA Pro 8.2\python\3).

4. Now we have to generate the hash database, so it is a matter of choice. Readers must choose which
DLLs will be used as source to generate the hash database. You can create a directory with all
chosen DLLs and generate a partial database, or include all DLLs from C:\Windows\System32
directory to generate a big database and, of course, much more complete than our partial one. |
have generated both databases:

a. ab_hashes_partial.db (60.960 KB — generated in a couple of minutes)
b. ab_hashes_full.db (596.688 KB — takes about 30 minutes to get finished)

C:\github\flare-ida\shellcode_hashestpython make_sc_hash_db.py ab_hashes_partial.db partial_dll_folder
Processing file partial_dll_folder\advapisz—dtt

Processed 870 export symbols in 1.75 seconds: partial_dll_folder\advapi32.dll
Processing file partial_dll_folder\advpack.dll

Processed 84 export symbols in ©.36 seconds: partial_dll_folder\advpack.dll
Processing file partial_dll_folder\comctl32.dll

Processed 119 export symbols in ©.18 seconds: partial_dll_folder\comctl32.d1ll
Processing file partial_dll_folder\comdlg32.dll

Processed 28 export symbols in ©.86 seconds: partial_dll_folder\comdlg32.dll
Processing file partial_dll_folder\crypt32.dll

Processed 295 export symbols in ©.85 seconds: partial_dll_folder\crypt32.dll
Processing file partial_dll_folder\dnsapi.dll

Processed 315 export symbols in 1.18 seconds: partial_dll_folder\dnsapi.dll
Processing file partial_dll_folder\gdi32.dll

[Figure 28]: Shellcode Hashes: generating the database

5. If readers don’t have a ready list of interesting DLLs, Hexacorn (https://twitter.com/Hexacorn)
recently authored an article and his list is good enough for handling most of the cases. The Adam’s
article is available on: https://www.hexacorn.com/blog/2022/12/03/using-make sc_hash db-py-
to-create-api-hashing-dbs/

6. Check whether the installed and default Python on Windows matches exactly with the version
being used by IDA Pro:

a. on Windows: python -V
26| Page

https://github.com/mandiant/flare-ida
https://twitter.com/Hexacorn
https://www.hexacorn.com/blog/2022/12/03/using-make_sc_hash_db-py-to-create-api-hashing-dbs/
https://www.hexacorn.com/blog/2022/12/03/using-make_sc_hash_db-py-to-create-api-hashing-dbs/

https://exploitreversing.com

b. goto “C:\Program Files\IDA Pro 8.2” and run the idapyswitch.exe executable. Be sure of
picking up exactly the same version that it is the default one on Windows.
c. Open the IDA Pro, go to the Python command line and type the following command, which
should return the default Python version used by IDA Pro, and the same from Windows:
i. import sys
ii. sys.version

7. On IDA Pro, go to Edit = Plugins = Shellcode Hashes and pick up the generated database. A form
will be shown, and readers must pick up the algorithm (CRC32, as we found) and enter the XOR key
(0xE462D21C), as we also discovered:

wf'e code Hash Search

cre3d Standard crc32
cre32¥orlcaddddde
cre32bzip2lower
mult21AddHash32
add15055hl5Hash32

' ' L ol ol W '

Options
B DWORD Array B Create Struct
B Instr Operands
B Use XOR seed OxE462021C

B use Decompiler if available

K Cancel

[Figure 29]: Shellcode Hashes plugin

After running the plugin, we have the following result:

1 int sub_593628()

2 {

3 int result; // eax

4 dint (_ cdecl *v1)(int, DWORD, DWORD, DWORD, DWORD, DWORD}; // ebx

]

6 if (dword _59D228 == BxA33C83E5)

714

8 vl = sub_593864(Bx6B8A28C5C, Bx1CREF3B7); [/ ntoskrnl.exe!b'RtlCreateHeap’

9 dword _59D22C = sub_ 593064(0x6BA28C5C, BxS5EBAFAA3);// ntoskrnl.exe!b'RtlDestroyHeap®
1@ if (dword_59D228 == BxA3I3ICB3ES)
11 dword_59D228 = v1(2, @, 8, 8, 8, B8);
12 3}
13 result = sub 593864 (Bx60A28C5C, Ox45BABB6B); // ntoskrnl.exe!b'RtlAllocateHeap’
14 if (!result)
15 return @;
16 debugbreak();
17 debugbreak();
18 return result;
19 }

[Figure 30]: Shellcode Hashes: applied names
27 |Page

https://exploitreversing.com

The resulting is great and, as readers can see, all DLL and APl names found by Shellcode Hashes plugin are
applied as comment. Readers shouldn’t forget that, to get to this point, we worked and analyzed the code
to find:

= hash algorithm
= XOR key
= hash resolving routine

Without having the hash algorithm and XOR key in our hands, so it would be impossible to use the plugin
to get the right result. In the other hand, the plugin also applies comments on Assembly code:

.text:@8593628 ; int sub 592628()

Ltext:80593628 sub_ 593628 proc near ; CODE XREF: sub_59361C+41]
.text: 08593628 3 sub_593958+3D4p ...
¢ _text:88593628 push esi
.text:08593629 push edi
Ltext: 08593624 push ebx
Ltext: 00593628 mov esi, offset dword_ 590228
.text:08593630 mowv edi, ecx
.text: 88593632 cmp dword ptr [esi], BA33CE3ESh
Ltext: 00593638 jz short loc_59365C
.text:@059363A
.text:@859363A loc_59363A: ; CODE XREF: sub_593628+5Fi]
Ltext:@859363A 5 sub_593628+6E4]
Ltext:BR59363A push A5B68B68h I; ntoskrnl.exe!b'RtlﬁllocateHeap'I
.text:@B59363F push 6BA28C5Ch
Ltext:@8593644 call sub_593864
Ltext: 08593649 test eax, eax
-text:00593648 jz short loc 593656
Ltext: 08593640 push edi
Ltext:0859364E push 8
.text:80593658 push dword ptr [esi]
Ltext: 80593652 int 3 ; Trap to Debugger
Ltext: 08593653 int 3 ; Trap to Debugger
Ltext: 08593654 jmp short loc_593658

SEextiBB5 03656 ; - m s oo
.text: 88593656

Ltext:88593656 loc_593656: ; CODE XREF: sub_593628+231]
-text:B0593656 xor eax, eax

.text:B8593658

Ltext:88593658 loc_593658: ; CODE XREF: sub_593628+2C1]
Ltext:00593658 pop ebx

.text:88593659 pop edi

Ltext: 08593654 pop esi

.text: 085936586 retn

SEEXEIBB59365C § - oo
.text:0859365C

Ltext:8859365C loc_59365C: ; CODE XREF: sub 593628+181]
-text:B@59365C push 1CBEF387h I; ntoskrnl.exe!b'RthPeateHeap[
.text:B8593661 push 6BA28C5Ch

.text: 08593666 call sub_593864

.text: 00593668 mov ebx, eax

.text:88593660 push SEBAFAASH ; ntoskrnl.exe!b'RtlDestroyHeap
.text: 88593672 push 6BA28C5Ch

Ltext: 88593677 call sub_593864

[Figure 31]: Shellcode Hashes: applied names on Assembly code

28| Page

https://exploitreversing.com

There’s a small catch here: if readers will apply the full database hash, which was generated using
C:\Windows\System directory, eventually the name of DLL will be different from shown above because
such a function might be exported by more than one DLL.

Personally, | like Shellcode Hashes plugin because it is easy to work with it since you have done the
analysis correctly. Furthermore, it offers us good points:

= |t’s excellent to be used with analysis of shellcodes (shellcode analysis will be a key topic covered in
next versions of this series — maybe in MAS 9 or MAS 10 — stay tuned!)

* |t makes comments on pseudo and Assembly code.

= |t has a quite extensive list of available hash algorithms, although Mandiant haven’t updated since
then, unfortunately.

= Keep information private without transmitting any information to other place on Internet.

The good plugin offered by Igor Kuznetsov (Apihashes: https://github.com/KasperskylLab/Apihashes) has a
similar principle to Shellcode Hashes, but | will not show it here. Readers can make tests with it and,
certainly, will get the same result obtained by other plugins.

The other plugin is HashDB plugin from OALabs, which can be cloned by executing git clone
https://github.com/OALabs/hashdb-ida. To get it working, copy hashdb.py to IDA’s plugin directory
(C:\Program Files\IDA Pro 8.2\plugins). Attention: as HashDB performs lookup on OALabs server, so you
should remember to keep Internet access in your environment.

There is more than one way to proceed. The steps to get hash resolution are:

Go to Edit = Plugins = HashDB
Pick the algorithm up: crc32
Enter the XOR key: 0xE462D21C
d. Click on OK button.

o T o

e —— S — S S — S —

®

f API LURL https: /fhashdb.openanalysis.net -~
i Enum Prefix hashdb_strings ~
@ Enable XOR OxE462021C ~ (hex)

Select algorithm

Algorithm Size (Bits)

conti_mm3 32 |

32 32 Refresh Algorithms
[s P v | 37

arc32_mpeg_2 32

Line 16 of 67

Ok Cancel

[Figure 32]: HashDB Settings

29| Page

https://github.com/KasperskyLab/Apihashes
https://github.com/OALabs/hashdb-ida

https://exploitreversing.com

We are ready to go, but let me explain an alternative method to do this setup and with an additional
advantage. Once we already found places over the code with the XOR key (for example, sub_593064 >
sub_59306C - sub_59143C), we can set up the plugin by right clicking the XOR key and choosing HashDB
set XOR key option:

389 v89 = 8;

310 v95 = (unsigned int)v71 ~ EIXE462D21‘"FJ

311 while (1) Add breakpoint F2
312 { Synchronize with L4
313 vaA7 = 8;

314 va8 = (_BYTE *)(al + *v45); (1 copy Ctrl+C
315 LOBYTE(v72) = *v48;)

316 if ((_BYTE)v72) Decimel

317 { Octal

318 do Char R
319 { Enum M
320 va9 = vAB[++v4T7]; Invert sign _
321 *((LBYTE *)&u72 + v47) = va9; Bitwise negate

;i; L:E-Ihile (vas); Structure offset T
324 } Edit comment... !
325 w58 = 5Ub_594FFC(&'-.-'?2, -—_), Edit block comment... Ins
326 if (w58 == v95) Hide casts k!
327 break; # HashDB Lookup Alt+
iif‘ ++va5; Lﬂ HashDB set XOR key |

329 ++vdb; .

336 if (:—+5: >= ¥(unsigned int *)((® HashDB Hunt Algorithr

331 goto LABEL_79; Font...

332 ¥

333 ved = @;

334 51 = *({_DWORD *)(al + *(int *)({(char *)v4d + al + Ox1C) + 4 * *y45);
335 if { v51 < (unsigned int)v44 || v51 »>= (unsigned int)vo0

[Figure 33]: HashDB: setting XOR key

After getting this step done, right click on the hash and choose HashDB Hunt Algorithm (check the image
above). The advantage of this option is that HashDB will try to guess the algorithm being used
automatically. In other words, if you are lucky, there will not be necessary to analyze the code before
resolving hashes because the plugin will be able to detect the algorithm for you (CRC32, in this case). Don’t
forget to mark the algorithm once the Matched Algorithms form is presented!

™ Matched Algorithms >

The following algorithms contain @ matching hash.
Select an algorithm to set as the default for HashDBE.

Algorithm Size (Bits)

Line 1 of 1

[Figure 34]: HashDB: searching and select the algorithm

30| Page

https://exploitreversing.com

Finally, we are ready to right-click on any hash, choose HashDB Lookup and click on Import:

1 int sub 593623()

2 {

3 int result; [/ eax

4 int (_ _cdecl *v1){int, DWORD, DWORD, DWORD, DWORD, DWORD); // ebx

5

6 if (dword_59D228 == BxA33CB3ES)

7 q

8 vl = sub_593064(Bx6BA28C5C, @x1CAEF387); /{ ntoskrnl.exe!b'RtlCreateHeap’

9 dword_59D22C = sub_ 593864(Bx6BA2BC5C, BxSEGAFAA3);// ntoskrnl.exe!b'RtlDestroyHeap®
1@ if (dword_59D228 == 8xA33C83E5)
11 dword_59D228 = v1(2, @, 8, B, 8, B);
12}
13 result = sub 593864(Bx6BA28C5C, @x45B68BAB); // ntoskrnl.exe!b'RtlAllocateHeap’
14 if { 'result) A »
15 return 8; W Heshoe B i
16 _ debugbreak();
17 debugbreak(); The hash for RtlAllecateHeapis a module function,
18 return result; Do you want to import all function hashes from this module?
19 } Selectmodule ntdll -

Import Mo

[Figure 35]: HashDB: look up for hash

Imports might take few seconds and freeze the IDA Pro, but that is a normal behavior and let it to finish its
job. HashDB, like Shellcode Hashes from Mandiant, creates an enumeration containing all hashed
functions, as shown below:

FFFFFFFF ; enum hashdb_strings_crc32, mappedto_74, width 4 bytes
FFFFFFFF NtReplyWaitReceivePort @ = 45B36h

FFFFFFFF RtlCaptureStackContext 8@ = SESBFEhL

FFFFFFFF RtlAreBitsClear @ = 613663h

FFFFFFFF RtlDowncaselUnicodeChar 8 = 6985C1lh

FFFFFFFF _alldiv @ = BEFD2Fh

FFFFFFFE NtWowbdGetCurrentProcessorlumberEx B = 989C82H
FFFFFFFF NtWriteVirtualMemory B = BE54B25h

FFFFFFFF RtlValidateUnicodeString 8 = 8FB2782h

FFFFFFFF iswdigit ®@ = 116898468h
FFFFFFFE NtOpenResourceManager 8 = 158E492h
FFFFFFFF _ltoa s 8 = 1883A4Dh

FFRFFFFFFE LulblowbdCsrGetProcessId B = 1C3DAGER
FFFFFFFF RtlUserThreadStart_B = 1D67F7Dh
FFFFFFEE RtlCreateProcessParameters @ = 21450E4h
FFFFFFFF ZwQueryBootEntrylOrder_8 = 21BCECSh
FFFFFFFE RtlGenerateddot3Name B8 = 297A893h
FFFFFRFE RtlAnsiCharToUnicodeChar B8 = 297F5F8h
FFFFFFFF RtlReportSgmEscalation 8 = 2CAS8D2h

———————— ZwCompareTokens @ = 2DAD4B2h
FFFFFFFF RtlAbortRXact @ = 2E7C61Eh

[Figure 36]: HashDB creates an enumeration for APIs

We have the enumeration created by HashDB (hashdb_strings_crc32), which will be useful for us.

31|Page

https://exploitreversing.com

Obviously, we have to do it for both hashes used in the routine. Now we can edit the routine signature
(sub_593064 — renamed to ab_hash_resolving) and change its two argument’s type to
hashdb_strings_crc32, as shown below:

Flease enter the type dedaration int __stdcall ab_hash_resolving(int, int) ™
oK Cancel
[Figure 37]: Before changing the sub_593064 routine’s type
Flease enter the type dedaration int __stdcall ab_hash_resolving(hashdb_strings_crc32, hashdb_strings_crc32) ~

[Figure 38]: After changing the sub_593064 routine’s type

Now it’s enough to press F5 and the result will be much better:

1 int sub_593628()

2 {

3 int RtlAllocateHeap @; // eax

4 int (__cdecl *RtlCreateHeap @)(int, _DWORD, _DWORD, _DWORD, _DWORD, _DWORD); // ebx

5

6 if (dword_59D228 == BxA33C83ES5)

7 Aq

8 RtlCreateHeap @ = ab_hash_resolving 8(ntdll dll, RtlCreateHeap @);// ntoskrnl.exe!b’RtlCreateHeap’

[Vs]

dword_59D22C = ab_hash_resolving B(ntdll dll, RtlDestroyHeap @);// ntoskrnl.exelb'RtlDestroyHeap"

1@ if (dword_59D228 == BxA33C83E5)

11 dword_59D228 = RtlCreateHeap 8(2, @, @, 8, 8, 8);

12}

13 RtlAllocateHeap @ = ab_hash_resolving B(ntdll dl1l, RtlAllocateHeap 8);// ntoskrnl.exe!b’RtlAllocateHeap’
14 if ('RtlAllocateHeap @)

15 return B;

16 __debugbreak();

17 __debugbreak();

18 return RtlAllocateHeap @;

19 }

[Figure 39]: After updating the pseudo code

There is a note here: | renamed v1 to RtlICreateHeap_0 and the result variable to RItAllocateHeap_0.
Actually, this code needs a supplemental change, but | am going to do it in the next pages after we analyze
the piece of code related to the exception handler.

Additionally, | always like to rename the subroutine’s name (sub_593628, in this case) to one of the API’s
name within routine (maybe the most important) or a name representing the entire goal of that routine
because a better name will provide us with a guideline to analyze other parts of code later.

From this point onward, the suggestion is to repeat the same procedure: F5 + HashDB Lookup (for APIs
coming from different DLLs) + renaming for all 199 routines that are calling hashdb_strings_crc32. Yes, it
takes a meaningful amount of time, but the final result provides us a much better indication and is going to
help us to find what we are looking for:

32| Page

https://exploitreversing.com

| [xrefs to ab_hash_re O

Directic Type Address Text

+=] .. (= au_ ST U EF LU T wan QL _ 1 13asl i ssunrvinng
@ D.. p ab_ReadFie+23 call ab_hash_resolving
@ D.. p ab_\WriteFile_0+24 call ab_hash_resolving
@ D.. p ab_GetFileAttributesEx\W +10 call ab_hash_resolving
@ D.. p ab_RemoveDirectoryW _DeleteFilew +1A call ab_hash_resolving
@ D.. p ab_RemoveDirectoryW _DeleteFileWw+4E call ab_hash_resolving
@ D.. p ab_CreateDirectoryW+12 call ab_hash_resalving
@ D.. p ab_CreateDirectory'W +175 call ab_hash_resalving
@ D. p ab_CreateProcess\W_0+AS call ab_hash_resolving
@ D.. p ab_FindClose+D call ab_hash_resolving
@ D.. p ab_FindFirstFileEx\W +1E call ab_hash_resolving
@ D.. p ab_FindMextFilew +15 call ab_hash_resolving
@ D.. p ab_SysFresstring+13 call ab_hash_resolving
@ D.. p ab_SysallocString+12 call ab_hash_resalving
@ D.. p ab_Colninitialize +4 call ab_hash_resalving
@ D.. p ab_ColnitializeEx+D call ab_hash_resalving
@ D. p ab_IsBadReadPtr+23 call ab_hash_resolving
@ D.. p ab_InternetOpenW +75 call ab_hash_resolving
@ D.. p ab_InternetOpenW +F5 call ab_hash_resolving
@ D.. p ab_InternetCpenit +130 call ab_hash_resolving
@ D.. p ab_InternetOpenW +1C8 call ab_hash_resolving
@ D.. p ab_InternetCloseHandle+D call ab_hash_resalving
@ D.. p ab_Internet_1+FC call ab_hash_resalving
@ D.. p ab_Internet_1+1AC call ab_hash_resalving
@ D. p ab_Internet_1+290 call ab_hash_resolving
@ D.. p ab_Internet_1+282 call ab_hash_resolving
@ D.. p ab_Internet_1+20DC call ab_hash_resolving
@ D.. p ab_Internet_1+308 call ab_hash_resolving
@ D.. p ab_Internet_2+68 call ab_hash_resolving
@ D.. p ab_Internet_2+F4 call ab_hash_resalving
@ D.. p ab_Internet_2+149 call ab_hash_resalving
@ D.. p ab_Internet_2+1A1 call ab_hash_resalving
@ D. p ab_Internet_2+429C call ab_hash_resolving
@ D.. p ab_MtQueryvirtualMemary_0+33 call ab_hash_resolving
@ D.. p ab_MtQueryvirtualMemaory_0+5C call ab_hash_resolving
@ D.. p ab_MtQueryvirtualMemaory_0+FA call ab_hash_resolving
@ D.. p ab_MtQueryvirtualMemory_0+1C6 call ab_hash_resolving
@ D.. p ab_Loadlibrary_GetProcAddress+44 call ab_hash_resalving
@ D.. p ab_Loadlibrary_GetProcAddress+A4 call ab_hash_resalving
@ D.. p ab_Loadlibrary_GetProcAddress+BC call ab_hash_resalving
@ D. p ab_LoadLibrary_GetProcAddress+109 call ab_hash_resolving
@ D.. p ab_Loadlibrary_GetProcAddress+123 call ab_hash_resolving
@ D.. p ab_LoadLibrary_GetProcAddress+170 call ab_hash_resolving
@ D.. p ab_LoadLibrary_GetProcAddress+188 call ab_hash_resolving
@ D.. p ab_LoadLibrary_GetProcAddress+141 call ab_hash_resolving
@ D.. p ab_Freelibrary+52 call ab_hash_resalving
@ D.. p ab_SetlastError +107 call ab_hash_resalving

| Line 173 of 199

[Figure 40]: All API hashes resolved, and wrapper routines renamed

K Cancel Search

Help

As | mentioned in the last page, | used HashDB plugin to resolve hashes and, in this case, there is
something really interesting: eventual places where | couldn’t get a result through HashDB, | already had

answers from Shellcode Hashes plugin. Therefore, it has worked as a double-checking.

33| Page

https://exploitreversing.com

Now we are able to return to one of pending problems. As | mentioned, the malware actor may have
registered an exception handler which manages exceptions of type EXCEPTION_BREAKPOINT, whose type
is related to an _EXCEPTION_RECORD structure. The expected goal is to force an exception, transfer the
execution flow to the registered exception handler and, at end, execute the address stored on the top of
the stack, which is exactly the same content of eax that holds the resolved API’s address and has been
pushed onto the stack.

A good starting point to search for this exception handler is at beginning of the DLL and, more specifically,
one the first lines of DIIRegisterServer function. as shown below:

1 HRESULT _ stdcall D1lRegisterServer()

2 {

3 dnt *v@; // esi

4 unsigned int i; // eax

5 int v3; /f eax

6 struct EXCEPTION REGISTRATION RECORD *Exceptionlist; // [esp+24h] [ebp-8h] BYRE
7 int *5; // [esp+28h] [ebp-4h]

8

9 w5 = sub_5821FC;
18 Exceptionlist = NtCurrentTeb()->NtTib.Exceptionlist;
11 for (1 =8; 1 < Bx13512; ++1)

12 {

13 __debugbreak();
14 __debugbreak();
15 __debugbreak();
16 __debugbreak();
17}

18 5 = vo;

19 Exceptionlist = wv@;

260 sub 593BE8(&Exceptionlist, vB, B);
21 if (!byte 59D828)

22 {

23 ab_OutputDebugStringl CreateProcess(vi);

24 dword_59D1C4(8);

25 LABEL_8:

26 sub_593144(&Exceptionlist, vA);

27 return 1;

28}

29 if (byte 59D268)

38 goto LABEL_8;

31 byte 59D268 = 1; [/ kernel32.dlllb'CreateThread’

22wl = ab_hash_resolving(kernel32 dll, CreateThread B8);
33 if (v)

M

35 v3 = sub_591D38(8xA731522);

36 if ((ve)(e, 8, ab VirtualFree ExitThread, v3, 8, 8))
37 goto LABEL 8;

8}

39 sub 593144(&Exceptionlist, v@);
48 return 8;
41 }
[Figure 41]: DIIRegisterServer() function

34| Page

https://exploitreversing.com

Indeed, there is a list of clues that we are close to our target because we can see a declaration of an
instance of _EXCEPTION_REGISTRATION_RECORD structure (ExceptionlList) on line 6. Also, the code is
retrieving the current ExceptionlList from the TEB (Thread Environment Block) on line 10 and storing into
the declared Exceptionlist variable. Readers remember that the first members of _TEB structure is given
by the following:

ppoooeea _TEB struc ; (sizeof=0xFE8, align=0x4, copyof_2)
gggoeaed NtTib _NT_TIB ?

ggeaealC EnvironmentPointer dd ? ; offset

g@gaea2e ClientId _CLIENT_ID ?

geeeea2s ActiveRpcHandle dd ? ; offset

geeeed2C ThreadlLocalStoragePointer dd ? ; offset

ggeaea3id ProcessEnvironmentBlock dd ? ; offset

geeeea3d LastErrorValue dd ?

geeeed3s CountOflwnedCriticalSections dd ?

geeeed3C CsrClientThread dd ? ; offset
geeaeadd Win32ThreadInfo dd ? ; offset
poeeeadd User32Reserved dd 26 dup(?)

peeaeBAC UserReserved dd 5 dup(?)

gepeeace WoW32Reserved dd ? ; offset
geaeeacd Currentlocale dd ?

geeaeaCs FpSoftwareStatusRegister dd ?

peeaeeCC SystemReservedl dd 54 dup(?) ; offset
geeeelsd ExceptionCode dd ?
geeaelas ActivationContextStackPointer dd ? ; offset

[Figure 42]: _TEB structure: first fields

Readers can get the same structure from IDA Pro: SHIFT+F9 (Structures View) = Insert =2 Add standard
structure 2 CTRL+F - _TEB, just in case the _TEB is not already added.

The first argument of _TEB is a member of type _NT_TIB (TIB: Thread Information Block), which has the
following structure:

popoeend NT TIB struc ; (sizeof=0x1C, align=0Bx4, copyof 3)
goooeeeo ; XREF: _TEB/r
gopeeeed Exceptionlist dd ? ; offset

geeRaeRd StackBase dd ? ; offset

PERREeRs Stacklimit dd ? ; offset

geeaaesC SubSystemTib dd ? ; offset

0eeRee1e anonymous_@ _NT_TIB::$8349ADBAAS2ECO9BEC@SE2292695FBBA ?
goeaaeld ArbitraryUserPointer dd ? ; offset

goeeeels Self dd ? ; offset

geeeeelC _NT_TIB ends

[Figure 43]: _NT_TIB structure

Although readers are not able to see the exact type of ExceptionList member as well as other members in
the image above, you can retrieve the full structure definition by going to Local Types tab (SHIFT+F1),
searching the _NT_TIB and requesting to edit it (CTRL+E). The same information can be retrieved from
https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/ NT TIB.

35| Page

https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/_NT_TIB

https://exploitreversing.com

| prefer fetching structure definitions from the IDA Pro always that it is possible, as shown below:

struct NT TIB
1

struct _EXCEPTION_REGISTRATION RECORD *ExceptionList;
PVOID StackBase;

PVOID StackLimit;

PWOID SubSystemTib;

union

1

PVOID FiberData;

DWORD Version;
bs
PVOID ArbitraryUserPointer;
struct _NT_TIB *Self;

b
[Figure 44]: _NT_TIB structure with type information

Following the same procedure, we learn that the _EXCEPTION_REGISTRATION_RECORD structure has the
definition below:

struct EXCEPTION REGISTRATION RECORD

1
struct _EXCEPTION_REGISTRATION RECORD *Mext;
PEXCEPTION ROUTINE Handler;

}s
[Figure 45]: EXCEPTION_REGISTRATION_RECORD structure

Therefore, the _PEB = _TEB = _NT_TIB structure stores a member that is a pointer to a list of
_EXCEPTION_REGISTRATION_RECORD structures (linked by the Next pointer), which holds a field named
Handler. In other words, this Handler member (PEXCEPTION_ROUTINE type) represents an exception

routine (actually, the _EXCEPTION_RECORD), which is linked to other _EXCEPTION_RECORD structures
through its first field, as follows:

typedef EXCEPTION DISPOSITION stdcall EXCEPTION ROUTINE(struct
_EXCEPTION_RECORD *ExceptionRecord, PVOID EstablisherFrame,
struct CONTEXT *ContextRecord, PVOID DispatcherContext);

[Figure 46]: EXCEPTION_ROUTINE type

Offset|Size|struct _EXCEPTION_RECORD
1
2800|2884 DWORD ExceptionCode;
28684/ 08884 DWORD ExceptionFlags;
pees|eea4| struct EXCEPTION RECORD *ExceptionRecord;
aeec|eeas) PVOID ExceptionAddress;
2816 Baad DWORD NumberParameters;
8814/883C, ULONG _PTR ExceptionInformation[15];
aa58| };

[Figure 47]: _EXCEPTION_RECORD structure

36|Page

https://exploitreversing.com

Returning to DIIRegisterServer routine, go into sub_5930E8 and the following function will be presented:

1 DWORD * userpurge sub 5938E8@<eax>(DWORD *al@<ecx», int *al@<esi>, int a3)
24

3 bool wvd; // =zf

4 int {_ stdcall *v6)(int, int *); // eax

2

6wl = dword 590224 == @xEB797EG1;

7 *al = a3;

8 if (w4)

9
18 HIBYTE{word_59D2F@) = 1; /i ntdll.dll!b"RtlAddVectoredExceptionHandler'
11 vh = sub_59386C(8x6BA28C5C, Bx5ECID@14, =2, BxHBA2BCS5C, Bx6BA28C5C);
12 dword 590224 = sub 593138(v6);
13 HIBYTE{word_59D2F@) = @;
14 }
15 return a1;
16 }

[Figure 48]: sub_5930E8 routine

Before we proceed, there is a small detail to comment. One pages 11 and 12, we discussed about a second
routine that also is responsible for resolving hashes and that accepts five arguments. Furthermore, this
routine is referred 59 times. Certainly, we can apply the same approach to improve and solve the API
hashing issues. As readers can see on Figure 48, the Shellcode Hashes plugin from Mandiant has already
solved, but we haven’t done the same with HashDB. If readers to analyze the sub_59306C = sub_59143C
routine, you will learn that the XOR key is exactly the same (0xE462D21C).

Therefore, we must change the sub_59306C signature from:
= char *__userpurge sub_59306C@<eax>(int@<eax>, char *@<edx>, int *@<esi>, int, int)
To:

= char *__userpurge sub_59306C@<eax>(hashdb_strings_crc32@<eax>, hashdb_strings_crc32
@<edx>, int *@<esi>, hashdb_strings_crc32, hashdb_strings_crc32)

The same sub_59306C routine is now present as:

1 void _ usercall sub 593144(DWORD *al@<ecx>, int *al2@<esi>)
2 {

3 if (*z2l1 && dword_59D224 != BxEB797EG1)

4 {

5 dword_59D224 = @xEB797EEL; // ntdll.d1ll!b'RtlRemoveVectoredExceptionHandler®
6 if (sub_593@6((

7 ntdll_d11,

8 RtlRemoveVectoredExceptionHandler_@,

Y als,
18 ntdll d11,
11 ntdll dil))
12 {
13 __debugbreak();
14 __debugbreak();
15 I
16 }
17 }

[Figure 49]: sub_5930E8 routine: after hashing resolving with HashDB

37| Page

https://exploitreversing.com

We have found the RtIRemoveVectoredExceptionHandler routine, which it is responsible for unregistering

a vectored exception handler, so it is much likely that we are close to find the

RtlIAddVectoredContinueHandler routine. If readers perform the same approach from sub_593064
routine that we did on Figure 40 to this second API hashing routine (sub_59306C routine — renamed as
ab_hash_resolving_2), resolving each one of the references using HashDB plugin and renaming each
respective parent function, the answer will come up instantly:

=] xrefs to ab_hash_re 2
Directic Type Address Text
= Up p ab_FreeSid+F call ab_hash_resolving_2
@ Up p ab_IsWows4Process +14 call ab_hash_resolving_2
@ Up p ab_GetTokenInformation+19 call ab_hash_resolving_2
@ p p ab_GetTokenInformation+30D call ab_hash_resolving_2
@ Up p ab_GetTokenInformation_2+16 call ab_hash_resolving_2
@ Up p ab_GetTokenInformation_2+54 call ab_hash_resolving_2
@ Up p ab_GetTokenInformation_2+B3 call ab_hash_resolving_2
@ Up p ab_GetTokenInformation_2+ED call ab_hash_resolving_2
@ Up p ab_GetTokenInformation_2+114 call ab_hash_resolving_2
@ Up p ab_GetSystemWowa4Directory'W +38 call ab_hash_resolving_2
@ Up p ab_GetSystemDirectory\W +33 call ab_hash_resolving_2
@ p p ab_internal_api_hash_resolution +FF call ab_hash_resolving_2
@ Up p ab_internal_api_hash_resolution +666 call ab_hash_resolving_2
@ Up p ab_internal_dll_hash_resolution+AB call ab_hash_resolving_2
@ Up p ab_internal_dll_hash_resolution+124 call ab_hash_resolving_2
@ Up p ab_internal_dll_hash_resolution+3a4 call ab_hash_resolving_2
@ Up p ab_IsWows4Process_0+20 call ab_hash_resolving_2
@ Up p ab_MtQueryInformationProcess+18 call ab_hash_resolving_2
@ Up p ab_MtDelayExecution+33 call ab_hash_resolving_2
@ p p ab_GetEnvironmentStringsW_0+15 call ab_hash_resolving_2
@ Up p ab_GetserMameW +3E call ab_hash_resolving_2
@ Up p ab_GetComputerMamei +3E call ab_hash_resolving_2
@ Up p Sexti0059249FA call ab_hash_resolving_2
@ Up p ab_GetThreadld+13 call ab_hash_resolving_2
@ Up p ab_GetCurrentProcessId+13 call ab_hash_resolving_2
@ Up p ab_GetCurrentProcessId+43 call ab_hash_resolving_2
@ Up p ab_SearchPathWW+22 call ab_hash_resolving_2
@ p p ab_MtallocatevirtualMemory +15 call ab_hash_resolving_2
@ Up p ab_MtFresvirtualMemary +1C call ab_hash_resolving_2
@ Up p ab_MtWaitForsingleObject+43 call ab_hash_resolving_2
@ Up p ab_MtWaitForMultipleObjects_0+44 call ab_hash_resolving_2
@ Up p ab_Wowa4DisableWowadFsRedirection +F call ab_hash_resolving_2
@ Up p ab_WowsdRevertWows4FsRedirection +F call ab_hash_resolving_2
@ Up p ab_WinStationQueryInformation''+231 call ab_hash_resolving_2
@ Up p ab_WinStationQueryInformation\' +459 call ab_hash_resolving_2
@ Up p ab_WinStationQueryInformationV +3Ca call ab_hash_resolving_2
@ Up p ab_WinstationQueryInformationVi +586 call ab_hash_resolving_2
@ p ab_RtAddvectoredExceptionHandler +2F call ab_hash_resolving_2
@ D.. p ab_RHRemoveVectoredExceptionHandler +24 call ab_hash_resolving_2
@ D.. p ab_general+C1 call ab_hash_resolving_2
@ D.. p ab_MtProtectVirtualMemory +128 call ab_hash_resolving_2
@ D.. p ab_Setl astError_0+F call ab_hash_resolving_2
@ O.. p ab_GetlastError+C call ab_hash_resolving_2
Line 54 of 59

0K Cancel Search Help

[Figure 50]: sub_59306C routine (renamed as ab_hash_resolving_2) references

38| Page

https://exploitreversing.com

Returning to DIIRegisterServer routine for the third time, we realize that RtIVectorExceptionHandler was

already there:

1 HRESULT _ stdcall Dl1lRegisterServer()

2 {

3 int *v@; // e=si

4 unsigned int i; // eax

5 int v3; // eax

6 struct EXCEPTION REGISTRATION RECORD *Exceptionlist; // [esp+24h] [ebp-8h
7 int *v5; // [esp+28h] [ebp-4h]

8

9 w5 = =sub 5821FC;
18 Exceptionlist = NtCurrentTeb()-»NtTib.Exceptionlist;
11 for (1 =8; 1 < Bx13512; ++1)

12 {

13 __debughreak();
14 __debugbreak();
15 __debugbreak();
16 __debugbreak();
17}

18 w5 = vB;

19 Exceptionlist = v@;

26 ab_RtlAddVectoredExceptionHandler(&Fxceptionlist, w8, B);
21 if (lbyte 590028)

22

23 ab_OutputDebugStringk CreateProcess(vi);

24 dword_5901C4(8) ;

25 LABEL_8:

26 ab_RtlRemoveVectoredExceptionHandler{&Exceptionlist, v@);
27 return 1;

28}

29 if { byte 59D268)

38 goto LABEL 8;

31 byte 59D268 = 1; f/ kernel32.dll!b’'CreateThread’
32wl = ab_hash_resolving(kernel32 dll, CreateThread 8);

33 if (vB)

4 {

35 v3 = sub_591D36(8xA731522);

36 if ((v8)(e, @, ab VirtualFree ExitThread, v2, @, 8))

37 goto LABEL 8;

38}

39 ab_RtlRemoveVectoredExceptionHandler{&Exceptionlist, wvi);
48 return 8;

41 }

[Figure 51]: DIIRegisterServer routine, after resolving API hashes.

The RtlIAddVectoredContinueHandler routine has the following prototype (check it up on:
https://github.com/winsiderss/systeminformer/blob/master/phnt/include/ntrtl.h):

RtlIAddVectoredContinueHandler(
In ULONG First,
_In_PVECTORED_EXCEPTION_HANDLER Handler

);

[w5)

39| Page

https://github.com/winsiderss/systeminformer/blob/master/phnt/include/ntrtl.h

https://exploitreversing.com

Although almost certainly readers already know about this topic, let me write few words about the
exceptions. So far, we are referring to Structure Exception Handlers (SEH) as in malware analysis as in
exploit development. Do you remember about old stack exploitation techniques to avoid cookies through
SEH (pop pop ret)? The fundamental idea of SEH is based on exception and termination handling, and it is
highly likely that readers already have seen C constructions __try + __ finally or __try + __except. As same
way, try + catch constructions in C++ should be common to readers. Part of the explanation mentioned on
pages 34 and 35 has SEH as reference.

Nonetheless, Windows provides a supplemental exception mechanism named Vectored Exception
Handling (VEH), which is a sort of extension to structured exception handling (SEH) and works together
with SEH. VEH allows an application to register a function (callback function) to watch or even handling
exceptions from a thread. When the exception happens, so this callback function triggers a notification and
send it to the application. As a rule, VEH handlers are called before SEH handlers, but they are called in the
order that they are added unless you specify a specific order. These VEH handlers are registered by calling
AddVectoredExceptionHandler():

PVOID AddVectoredExceptionHandler |
ULONG First,
PVECTCORED EXCEPTICN HANDLER Handler

1i

[Figure 52]: AddVectoredExceptionHandler()

The most valuable information here is the Handler, which is a pointer to a callback function, whose
respective type is PVECTORED_EXCEPTION_HANDLER. The callback has the following prototype:

PVECTORED EXCEPTION HANDLER FPvectoredExceptionHandler;

LONG PvectoredExceptionHandler
_EXCEPTION POINTERS *ExceptionInfo

)

I _}.

[Figure 53]: PvectoredExceptionHandler callback function

The Exceptioninfo parameter is a pointer to EXCEPTION_POINTERS structure, which receives the
exception record, and the EXCEPTION_POINTERS structure is defined as:

typedef struct EXCEPTION POINTERS {
PEXCEPTION RECORD ExcepticnRecord;
PCONTEXT ContextRecord;

} EXCEPTICN POINTERS, *PEXCEPTICN POINTERS;

[Figure 54]: EXCEPTION_POINTERS structure

As we can see above, there is a pointer (ExceptionRecord) to EXCEPTION_RECORD structure and another
pointer (ContextRecord) to CONTEXT structure. The EXCEPTION_RECORD structure describes an exception
that is independent of the machine, and the CONTEXT structure holds a series of information bound to
processor’s registers, so its composition changes from Intel x64 processor to ARM64 processors, for
example.

40 |Page

https://exploitreversing.com

As we already

showed the EXCEPTION_RECORD structure (page 35), so maybe it is relevant to show parts

of the _CONTEXT structure (defined in WinNT.h):

typedef struct CONTEXT {

CWORDG4
DWORDG4
CWORDG4
CWORDG4
CWORDG4
CWORDG4
DWORD
DWORD
WORD
WOCED
WORD
WOCED
WORD
WOCED
DWORD
CWORDG4

PlHome;
PZHome;
P3Home;
P4Home;
PSHome;
PoHome;
ContextFlags:
M=xCsr;
SegCs;
SegDs;
SegEs;
SegFs;
Segis;
SegSs;
EFlags:;
Drd;

[Figure 55]: _CONTEXT structure: first lines

M12Z
M12
M12
M12Z
M12Z

82 Hmmll;
82 ¥Xmml?Z;
82 ¥mml3;
82 Hmmld;
82 ¥mml5;

} DUMMYSTRUCTHNAME ;

DWORD

S[32];

} DUMMYUNIONNAME?

M1282

DWORDG4
DWORDG4
DWORDE4
DWORDEG4
DWORDG4
DWORDE4

VectorRegister([26];
VectorControl;
DebugControl;
LastBranchToRip;
LastBranchFromRip;
LastExceptionToRip;
LastExceptionFromRip;

} CONTEXT, *PCONTEXT;

[Figure 56]: _CONTEXT structure: last lines

Now that we quickly refreshed few facts about exceptions, it is time to return to our code in
DlIRegisterServer(), which as we saw in Figure 51. As we learned, AddVectoredExceptionHandler()
registers a vectored exception handler that, actually, is a callback method.

However, the malware is not using AddVectoredExceptionHandler(), but
RtlIAddVectoredExceptionHandler() that, fortunately, has identical arguments (check it on:
https://processhacker.sourceforge.io/doc/ntrtl 8h.html#aa9f0aa2c4497322dc3c16e509967baea).

The RtlIAddVectoredExceptionHandler() returns a pointer to the exception handlers, but you should pay
attention to the fact that is not the real RtIAddVectoredExceptionHandler(), but a wrapper to it. Thus,
moving into RtIAddVectoredExceptionHandler(), we have:

41 | Page

https://processhacker.sourceforge.io/doc/ntrtl_8h.html#aa9f0aa2c4497322dc3c16e509967baea

https://exploitreversing.com

* userpurge ab_RtlAddVectoredExceptionHandler@<eax>(

2

char *RtlAddVectoredExceptionHandler; [/ eax

dword 59D224 = sub 593138(RtlAddVectoredEx
= 0;

f/f ntdll.d11!b'RtlAddVectoredExceptionHandler’

ab_hash_resolwving 2(

ntdll d11,

RtldddVectoredExceptionHandler_8,

a2,

ntdll d11,

ntdll_d11);
eptionHandler);

ionHandler

1 _DWORD
2 _DWORD *al@<ecx>
3 int *al@<esi>»,
4 int a3)
51
6 bool vd; /f zf
7
8
9 wid = dword_ 590224 == BxEB797EB1;
18 *al = a3;
11 if (wvd)
12 {
13 HIBYTE{word_59D2F8) = 1;
14 RtlAddVectoredExcept
15
16
17
18
19
28
21 HIBYTE{word_59D2F@)
22 %
23 return al;
24}

[Figure 57]: ab_RtlAddVectoredExceptionHandler routine

This routine is pretty identical to other ones. Checking its respective Assembly code and also sub_593138
routine, we have:

Jtext
text
text
text
Ltext
Ltext
Ldext
Ldext
Ldext
Jtext
Jtext
Jtext
text
text
text
text
Ltext
Ldext
Ldext
Ldext
Jtext
Jtext
Jtext
Jtext
text
text
text
Ltext

188593184 loc_593184:
:@@593184

188593189

:8859318E

:8859318F

:g@593118@

188593117

:8859311C

18B59311E

188593123

188593128

:8859312D

188593134

188593134 ab_RtlAddVectd
188593134
188593134
188593136
188593138
188593138
188593138

188593138

:B@593138 ; int _ thiscd

CODE XREF: ab_RtlAddVectoredExceptionHandler+141j

mowv eax, 6BA28C5Ch ; hashdb_strings_crc32
mowv edx, S5ECSDE@14h ; ntdll.dll!b'RtlAddVectoredExceptionHandler'
push eax ; hashdb _strings crc32
push eax ; hashdb _strings crc32
mow byte ptr word 59D2F8+1, 1
call ab_hash_resolving 2 <
mow ecx, eax
mov edx, otfset dword_5924B0

—call sub_593138
mow dword_58D224, eax
mowv byte ptr word_59D2F8+1, @
jmp short loc_5938FE

redExceptionHandler endp

&Yy
L

11 sub_593138(int (__stdcall *this)(int, int

:BB593138
188593130
:BB59313F
188593141

198593141 sub_ 593138

proc near ; CODE XREF: ab_RtlAddVectoredExceptionHandler+3Btp
push offset dword_5934B8
push 1
| call ecx [¢
retn
endp

[Figure 58]: ab_RtlAddVectoredExceptionHandler routine: Assembly code

42 |Page

https://exploitreversing.com

The Figure 58 shows us that the sub_593138 (Figure 57, line 20) is actually calling
RtlIAddVectoredExceptionHandler(), which was just resolved in the previous assembly instruction (Figure
20, line 14). At this point, the handler is registered and ready to be called.

Therefore, the malware forces the handler to be executed as an exception handler. Once the handler is
called, it will do its job and, after having finished, it will execute a return to the next value on the top of
the stack, which is exactly the eax’s value (returned by ab_hash_resolving()) and that is the resolved API
address. In this case, the code is using two int 3 instructions (0xCC,0xCC) as equivalent to call eax
(OxFF,0xD0). Just in case readers want to check these opcodes, a valuable resource is the online assembler
and disassembler on: https://shell-storm.org/online/Online-Assembler-and-Disassembler/.

.text:BB5935B0 iz short loc_5936D6 o0 EO @3 @8 @@ @8 0P 9% 9% 56 57 53 BE 23 D2 59 88
text:PO5936R2 test ebp, ebp 00 8B F9 81 3E E5 83 3C A3 74 22 65 68 8B B6 45 68
. 00 5C 8C A2 6@ E8 1B FA FF FF 85 CB 74 89 57 GA 08

.text:085936B4 jz short loc_5936D6 . 26 CC CC EB B2 33 C@ SB SF SE C3 63 87 F3 6F
.text:8085936B6 push 68814416h ; ntoskrnl.exe!b'memset’ 28 68 SC 8C A2 6@ EE F9 F9 FF FF 8B DE 68 A3 FA
.text:088593668 push 68A28C5Ch ; hashdb_strings_crc32 28 A SE 68 5C BC A2 6@ E8 EB F9 FF FF A3 2C D2 59
.text:BB5936C0 call ab_hash_resolving 00 81 3E E5 83 3C A3 75 Bl 33 C@ 50 58 58 58 50
text:BO5936CS test eax, eax 00 @2 FF D3 89 06 EB A2 8B 44 24 04 OF B6 54 24
. 00 8B 4C 24 @C 57 53 55 8B F8 8B E9 8B DA 85 FF

-text:805936C7 Jz short loc_5936D6 o0 24 85 ED 74 28 68 16 44 01 6@ 63 5C 8C A2 60
-text:885936C9 push ebp @@ 9F F9 FF FF 85 C@ 74 @D 55 @F BG DB 53 57
.text:@85936CA movzx ebx, bl 00 83 C4 @C EB 82 33 C@ 5D 5B 5F C3 8B 44 24 @4
.text:@85936CD push ebx 00 54 24 88 8B 4C 24 8C 56 53 55 8B EA 8B F1 8B
text:PO5936CE — adi 00 85 ED 74 25 85 DB 74 21 85 F6 74 1D 68 CF 7D
: 00 35 68 5C BC A2 6@ E8 58 F9 FF FF 85 (@ 74 @A

AES G i > 2 Ul i D o0 S5 53 CC CC 83 C4 @C EB @2 33 €@ 5D 5B 5E C3
.text:005936D0 int 3 ; Trap to Debugger 20 57 53 55 88 7C 24 14 B85 FF 74 34 8B 74 24 18
.text:0085936D1 add esp, BCh 20 F6 74 2C 8B 6C 24 1C B85 ED 74 24 8B 5C 24 20
.text:BB5936D4 jmp short loc_5936D8 00 DB 74 1C 68 48 C1 92 96 68 5C 8C A2 6@ EB 11
EEXE1BO5936D6 ;- - . 00 FF FF 85 (@ 74 89 53 55 56 57 CC CC 83 C4 10
00 5B SF SE C3 9 90 98 56 57 53 55 8B 7C 24 14

- text: 80593606 o0 FF 74 41 8B 74 24 18 85 F6 74 39 8B 6C 24 1C
.text:0885936D6 loc_5936D6: ; CODE XREF: ab_memset+18 45 ED 74 31 8B 5C 24 28 85 DB 74 29 83 7C 24 24
.text:0885936D6 ; ab_memset+1CTj ... aa 74 22 68 AA 2A 15 68 68 5C 3C A2 6@ E3 (2 F3
.text:B85936D6 xor eax, eax 00 FF 85 C@ 74 @F FF 74 24 24 53 55 56 57 CC CC
text:005936D8 00 C4 14 EB 82 33 €8 5D 5B SF 5E C3 56 57 53 55
00 EC ©C 8B 54 24 24 8B 74 24 2C 8B 44 24 20 3B

.text:085936D8 loc_5936D8: ; CODE XREF: ab_memset+3C . 77 24 S8 SC 24 25 BE FA 28 FE 8D 2¢ 82 28 EE
.text:805936D8 pop ebp o0 B6 1B EB @8 8D 47 81 F7 DF @3 FD 4F 47 8B D3
.text:885936D9 pop ebx 00 CF EB E6 @@ @@ @8 8B F8 85 FF 75 @4 33 C@ EB
.text:BB5936DA pop edi 00 8B C7 8B CE BB 54 24 28 E8 1A @0 @@ 0@ B35 CO
text:PO5936DB retn 00 D3 8B C7 83 C4 @C 5D 5B S5F 5E C3 8B 44 24 @4
g s pemset oni S rrmmsene somemans

[Figure 59]: sub_593698 routine, and the synchronized HexView that shows two CC opcodes.

The next suggested step is to make a backup of the IDA .idb file and the unpacked sample to avoid
corrupting them. | will be using, only as reference, the sub_593698 routine (renamed to ab_memset):

1 dint _ cdecl ab_memset(int al, char a2, int a3)
2 {

3 int result; // eax

4

5 if (lal)

6 return @;

7 if (1a3d)

8 return B;

9 result = ab_hash_resolving(ntdll dl1, memset 8);// ntoskrnl.exe!b'memset’
18 if (!result)
11 return @;
12 debugbreak();
13 debugbreak();
14 return result;

Y
(W3]
(-

[Figure 60]: sub_593698 routine, which will be used as reference for changes

43 |Page

https://shell-storm.org/online/Online-Assembler-and-Disassembler/

https://exploitreversing.com

To confirm whether our theory that the two int 3 instructions (\xCC\xCC) is equivalent to call eax
(\xFF\xDO0), we are alter the hexadecimal directly in the Hex View tab. To do it, click on Hex View tab,
press F2 hotkey and make the change:

2@503620 EO @3 69 @0 @8 00 98 08 56 57 53 BE 283 D2 59 @88 1 int _:.je:]_ a-_'u_n'en'ge't{iqt a'l’ char 62, int a?,)
@B593638 8B F9 81 3E ES 83 3C A3 74 22 68 68 8B B6 45 68 24

BE593648 SC 8C A2 68 ES 1B FA FF FF 85 C@ 74 @9 57 GA @8 -) B .)

BB593658 FF 36 CC CC EB @2 33 C@ 5B SF SE C3 68 87 F3 6E 3 Ant result; // eax

@@59366@ 1C 68 5C 8C A2 6@ E3 F9 F9 FF FF BB D8 68 A3 FA 4

BE503678 ©A SE 68 S5C 8C A2 68 E8 EB FO FF FF A3 2C D2 59 5 if (lal)

@B503688 @8 81 3E ES 83 3C A3 75 BL 33 (@ 58 58 58 58 50 6 return 8;

@@593698 6A @2 FF D3 89 @6 EB A2 8B 44 24 84 @F B6 54 24 7 if (1a3)

@ES036AR B8 8B AC 24 BC 57 53 55 8B F8 8B EO 8B DA 85 FF 8 return 0

@B5936B@ 74 24 85 ED 74 20 63 16 44 91 60 68 5C 8C A2 6@ - # .

005936C8 ES OF FO FF FF 85 C@ 74 @D 55 @F B6 DB 53 57[FF] 9 result = ab_hash_resolving(ntdll dl1l, memset_@);
B8593608 83 C4 @C EB 82 33 C@ 5SD 5B SF C3 3B 44 24 @4 1@ if (!result)

@ESU3GER BB 54 24 @3 8B 4C 24 @C 56 53 55 8B EA BB F1 8B 11 return 8;

@E5036Fe D8 85 ED 74 25 85 DB 74 21 85 F6 74 1D 68 CF 7D 12 debugbreak();

@@59378@ 23 35 68 5C 8C A2 6@ E8 58 F9 FF FF 85 €O 74 @A 13 debu break();

@B5093718 56 55 53 CC CC 83 C4 @C EB 82 33 €@ 5D 5B S5E C3 - — g 2

@@59372@8 56 57 53 55 8B 7C 24 14 85 FF 74 34 8B 74 24 18 14 return result;

@@59373@ 85 F6 74 2C 8B 6C 24 1C 85 ED 74 24 8B 5C 24 20 15 }

[Figure 61]: sub_593698 routine: hexadecimal bytes changed

Press F2 hotkey again to commit changes and we will see the following content:

1 int _ cdecl ab_memset{int al, unsigned _ int8 a2, int al)

2 {

3 int (_ cdecl *memset 8)(int, DWORD, int); // eax

a4

5 if (al

b & =2

7 && (memset 8 = (int (_ cdecl *)(int, DWORD, int))ab_hash_resolving(
8 ntd1l dl1,

9 memset B8)) =8)
10 {
11 return memset B(al, a2, a3);
12}

3 else
14 {
15 return B,
16 1}
17 }

[Figure 62]: sub_593698 routine: after changes
We have gotten a much better result because:

= there are not both ___debugbreak() instructions anymore.

= we can see the memset() function being explicitly called with its three parameters, which it was
not possible previously.

= the IF condition has been completely fixed and we can see what’s really happening.

= the function pointer to memset appeared and confirms that the function accepts three arguments.

= the Assembly view (IDA View-A) has been fixed too and there isn’t any analysis issue (red line)
marked on the code.

To save space here, | will show only one more example with effects from this change to illustrate that we
will have a much clearer pseudo and Assembly code after doing this manipulation over the code.

44 |Page

https://exploitreversing.com

1 int ab RtlAllocateHeap()

2 {

3 int RtlAllocateHeap_B; // eax

4 int {_ cdecl *RtlCreateHeap @)(int, DWORD, DWORD, DWORD, DWORD, DWORD); // ebx

]

6 if (dword_59D228 == @xA33CB3ES)

7 {

8 AtlCreateHeap B® = ab_hash_resolving(ntdll_d11, RtlCreateHeap_8);// ntoskrnl.exe!b’RtlCreateHeap’
9 dword _59D022C = ab_hash_resolving(ntdll dll, RtlDestroyHeap B);// ntoskrnl.exe!b’RtlDestroyHeap®
18 if (dword_59D228 == @xA33CB3ES)
11 dword_59D228 = RtlCreateHezp 6(2, 8, 8, 8, 8, 8);
12
13 RtlAllocateHe = ab_hash_resolving(ntdll dl1l, RtlAllocateHeap @8);// ntoskrnl.exe!b’'RtlAllocateHeap’
14 if ('RtlAllocateHeap 8)

15 return @;

16 debugbreak();

17 __debugbreak();

18 return RtlAllocateHeap @;

19 }

[Figure 63]: sub_593628 routine

After we have followed the same procedure and applied changes, we got the following result:

1 int thiscall ab RtlAllocateHeap(void #*this)

2 {

3 int (__stdcall *RtlAllocateHeap 8)(int, int, woid *); // eax

4 int (_ stdcall *RtlCreateHeap ©)(int, DWORD, DWORD, DWORD, DWORD, DWORD); // ebx

5

6 if (dword_ 590228 == @xA33C83ES5)

7 A

8 RtlCreateHeap @ = ab_hash_resolving(ntdll dll, RtlCreateHeap @);// ntoskrnl.exe!b’'RtlCreateHeap”

9 RtlDestroyHeap 8 1 = ab_hash_resolving(ntdll d11, RtlDestroyHeap 8);// ntoskrnl.exe!b’'RtlDestroyHeap’
18 if (dword_59D228 == BxA33C83IE5)

11 dword 590228 = RtlCreateHeap 8(2, 8, @, @, 8, 8);

12

13 ab_hash_resolving(ntdll dl1, RtlAllocateHeap 8);// ntoskrnl.exe!b'RtlAllocateHeap®
14 p @)

15 return RtlAllocateHeap_8(dword_59D228, 8, this);

16 else

17 return @;

18 }

[Figure 64]: sub_593628 routine: after changes

Once again, the final result is clearer, and we can see both RtlCreateHeap_0() and RtlAllocateHeap_0()
being invoked with all arguments. Another beneficial effect of this change is that we also can perform a
supplemental marking-up on the code due to fact that new lines were revealed to us.

The next step is composed by the following tasks:

= evaluating the number of occurrences of this hexadecimal sequence exist on the idb file.
= performing replacements on the IDA .idb file or directly on the unpacked binary file.

The IDA Pro provides an efficient and effortless way to search for binaries sequences and text, which will
be especially useful for us to accomplish the first task.

Clicking on any line on IDA View-A, press ALT+B hotkey to activate the Binary search form. In the String
field, type CC CC and make sure that Hex format is selected as well as Find all occurrences too, and press
OK:

45| Page

https://exploitreversing.com

Address

JSext:0053 795D
Sext:00599425
JSext:00599434
Sext:00595F 79
Sext:005934F 2
Sext:00596BA0
Sext:0058133D
Sext:005313FA
JSext:0053 1424
JSext:00531463
JSext:0053 2008
Sext:005321E8
Sext:005321ER
Sext:00552303
Sext:00582374
Sext:0058255D
Sext:00532586
JSext:0053 25AF
JSext:00532508
Sext:0053 2696
Sext:0053 2666
Sdext:005582451
Sext:00583C36
Sext: 0058 3FEE
Stext:005345FE
Aext:005353F3
Sext:005357EF
Sext:005368EE
JSdext:00537812
Sext:00538802
Sext: 0053887
Sext:00538CFD
Sext:00539021
JSext:0053646C
JSext:005364E4
Sext: 00536545
text: 00536566
Sext: 0055386459
Sdext:0058B677
Sext: 00536661
Sext:0053B6Fs
Sext:00536760
Jtext:005369AF
text:005369EA
Aext: 00536865
JSext:0053C062
Sdext:0053C761
Sdext:00538C8 18
Sext:0053C84C
Sext:0053CET0

Function

ab_NtMapViewOfSection
ab_NtMapViewOfSection
ab_NtMapViewOfSection
ab_NtMapViewOfSection
ab_MtDuplicateObject
DIRegisterserver
DlR.egisterServer
ab_RegloadKey'W
ab_RegloadKeyW

ab_CQutputDebugStringW'_C...
ab_CQutputDebugStringW'_C...
ab_CQutputDebugStringW_C...
ab_CQutputDebugStringW_C...
ab_QutputDebugStringW_C...
ab_OutputDebugStringW_C...
ab_OutputDebugStringW_C...

ab_CoCreatelnstance
ab_CoCreatelnstance

ab_NtOpenMutant_explorer. ..

ab_GetEnvironmentStringsy
ab_CQutputDebugStringy
ab_RegUnLoadKeyW
ab_CreateProcessw
ab_NtSetEvent
ab_MNtQueueApcThread
ab_code_injection_1
ab_rode_injection_1

ab_CreateFileMappingWi_Mt...
ab_CreateFileMappingW_Mt...
ab_CreateFileMappingW_Mt...

ab_MitDuplicateObject_0
ab_MtDuplicateObject_1
ab_thread_searching
ab_thread_searching
ab_thread_searching
ab_thread_searching

ab_GlobalAddAtomW_Global. ..

ab_GlobalDeleteAtom
ab_MtClose
ab_GetVolumeInformationiy
ab_MNtCreateMutant

ab_ConvertStringSecurityDe. .
ab_ConvertStringSecurityDe...
ab_ConvertStringSecurityDe...

[Figure 65]: Partial results from the search for \xCC\xCC sequence

This result shows us that:

Instruction

align 10h
align 10h
align 10h
dd OFFDOF3E8h, 74C085FFh, 75FF580Eh, 85CCCCO0h, 330A74C0h

dd 247CEE57h, 8B073B03h, 53000h, 1974C000h, OFD30h, 3D1274C0h
dd FCE8B5756h, 77800C24h, 0B2176814h, OBF68AT3Eh, DCTEA2A4Eh

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger
3; Trap to Debugger

= Most of occurrences are exactly the same trick used to make our reversing task more complex.
= Not all occurrences are related to Trap to Debugger, and some of them are related to hexadecimal

data.

= |DA Pro found 132 occurrences, and 126 hits are suitable for our context.

46 | Page

https://exploitreversing.com

Once we have decided to write a script, we should be careful in not change all occurrences because few of
them are not related to “trap to debugger” trick. In the other side, as these 0xCC sequences are used as
data or even as stack offset, so this few inappropriate changes would be really little impacting and would
not cause any visible effect on the reversing task. Anyway, we will avoid doing it.

Another possible decision would be writing a pure Python script to change the sequence \xCC\xCC to
\XFF\DO inside the binary and certainly it would work, but we would have the same side effect of changing
data (instead of instructions), and we also would be changing the binary that is something | do not like.
Eventually, | would have to re-analyze (and marking up) the new binary.

| have chosen writing a script using IDA Python/IDC and change only the IDA Pro .idb file to perform all
necessary operations. Therefore, go to File = Script Command... and write the following script:

import idautils
import idc
import ida_allins

T

target_functions = ["ab_hash_resolving”, "ab_hash_resclving 2"]
patchl = @xFF
patch2 = axDo@

o

]

=

for t_func in target_functions:

18 target addr = idc.get name_ea simple(t_func)
11 for addr_item in idautils.CodeRefsTo(target addr, 0):
12 func_ref = ida_funcs.get func(addr_item)

13 if(func_ref):
for ea in Heads(func_ref.start_ea, func_ref.end ea):
15 insn = idaapi.insn_t()

16 length = idaapi.decode_insn(insn, ea)
17 if insn.itype == ida_allins.NN_int3:
18 idc.patch_byte(ea, patchl)

19 idc.patch_byte(ea + 1, patch2)

28 break

15

22| print("\n\n[*]Patch applied!\n"™
[Figure 66]: IDA Python/IDC script for patching \xCC bytes
The script itself is quite simple, but there are few details that | would like to comment:

= [fitis necessary, you can also import ida_funcs and idaapi modules explicitly.

= | used both hash resolving functions as reference to find the name of wrapper functions where
they are being called and, having the name and start address of each wrapper function, the script
lists all Assembly instructions for each wrapper function and compare with them with int 3
instruction. This was the motivation for creating an array of function names on line 5, and new
functions could be added to this list if it were necessary.

= The final goal is to replace \xCC\xCC (int 3; int 3) by \xFF\xDO (call eax). Therefore, | didn’t want to
replace both \xCC byte for the same provided byte, but the first \xCC byte should be replaced by
47 |Page

https://exploitreversing.com

\XFF and the second \xCC byte should be replaced by \xD0. That is the reason for using the break
instruction on line 20. Indeed, the goal was searching for the first int 3 instruction, applying the first
patch over the first \xCC byte and, afterwards, incrementing ea in 1 to get the next int 3 address,
and apply the second patch over it too.

= | could have written a script to ensure that there would be two subsequent int 3 instructions
before applying the patch, but we already had verified previously that there was not any int 3 out
of this context.

= On line 10, the function idc.get_name_ea_simple() retrieves the address of a function given by the
target_functions array. Information about the function available on: https://www.hex-
rays.com/products/ida/support/idadoc/255.shtml.

= Online 11, the CodeRefsTo() gets all references to the the provided hash function and, as we
already had learned previously, there are many ones. Information about the function available on:
https://www.hex-
rays.com/products/ida/support/idapython docs/idautils.html#idautils.CodeRefsTo

= Online 12, get_func() retrieves the reference (address) to the function object (structure), given
the address of the function. Further information on: https://www.hex-
rays.com/products/ida/support/idapython docs/ida funcs.html#ida funcs.get func.

= On line 13, the script checks whether the reference (address) is valid (not null). Invalid references
are not a common occurrence, but it might happen, and, without this line, the script might stop.

= On line 14, Heads() gets a list of heads (instructions or data items) given the start and end
addresses. More information available on: https://www.hex-
rays.com/products/ida/support/idapython docs/idautils.html#idautils.Heads.

= Online 15, the insn_t constructor, from insn_t class, is called and returns an object of this class.
Information on: https://www.hex-rays.com/products/ida/support/sdkdoc/classinsn __t.html.

= Online 16, the decode_insn() function, which interprets the specified address as an instruction
and fills the insn_t structure provided as first parameter. The return is the length of the instruction
or zero. Further information on: https://www.hex-
rays.com/products/ida/support/sdkdoc/ua 8hpp.html#af83aad26f4b3e39e7fbdad441100f15cf.

= Online 17, the itype field (member of insn_t class), which contains the internal code of the
instruction, is used to check whether the provided instruction is an int 3 instruction. In additional,
readers might be interested in the fact that it is possible to verify any instruction using ida_allins
module. Further information on https://hex-
rays.com/products/ida/support/idapython docs/ida allins.html#ida allins.NN int3.

48 |Page

https://www.hex-rays.com/products/ida/support/idadoc/255.shtml
https://www.hex-rays.com/products/ida/support/idadoc/255.shtml
https://www.hex-rays.com/products/ida/support/idapython_docs/idautils.html#idautils.CodeRefsTo
https://www.hex-rays.com/products/ida/support/idapython_docs/idautils.html#idautils.CodeRefsTo
https://www.hex-rays.com/products/ida/support/idapython_docs/ida_funcs.html#ida_funcs.get_func
https://www.hex-rays.com/products/ida/support/idapython_docs/ida_funcs.html#ida_funcs.get_func
https://www.hex-rays.com/products/ida/support/idapython_docs/idautils.html#idautils.Heads
https://www.hex-rays.com/products/ida/support/idapython_docs/idautils.html#idautils.Heads
https://www.hex-rays.com/products/ida/support/sdkdoc/classinsn__t.html
https://www.hex-rays.com/products/ida/support/sdkdoc/ua_8hpp.html#af83aad26f4b3e39e7fbda441100f15cf
https://www.hex-rays.com/products/ida/support/sdkdoc/ua_8hpp.html#af83aad26f4b3e39e7fbda441100f15cf
https://hex-rays.com/products/ida/support/idapython_docs/ida_allins.html#ida_allins.NN_int3
https://hex-rays.com/products/ida/support/idapython_docs/ida_allins.html#ida_allins.NN_int3

https://exploitreversing.com

= One lines 18 and 19, once we are sure that we found an int 3 instruction, so we can patch its
respective opcode using our own opcode Please, pay attention to the fact that | used ea variable as
argument for the first patch_byte() call on the line 18, but | used ea + 1 as argument for the
second patch_byte() call to fix the second int 3 instruction. Information about the patch_byte
function can be found on: https://www.hex-rays.com/products/ida/support/idadoc/713.shtml

= The break instruction on line 20 is a little trick: once the script finds the first int 3 instruction, it
leaves the interaction within the provided function, and starts to list instructions of the next one.

| have run the script once and, using the IDA Pro binary mechanism (Search - Sequence of Bytes — or
ALT+B), | got the following result:

Address Function Instruction

text:005821ER DllRegisterServer int 3; Trap to Debugger

text: 0053 3FEE ab_CoCreatelnstance int 3; Trap to Debuager

Jtext: 00537950 align 10h

Jdext: 00592505 int 3; Trap to Debugger

Jdext:005934F2 dd 247CEB57h, 8B073EB03h, 53000h, 1974C000h, OFD30h, 3D1274C00
Jdext:00595F79 dd OFFDOF3E8h, 74C085FFh, ¥5FFS60Eh, 85CCCCO0h, 330A74C0R
Jext:00590BA0 dd FC8B5755h, 77800C24h, 0B2175814h, 0B7684733h, 0CTEE2A48h
text: 00599428 align 10h

Jdext: 00599434 align 10h

[Figure 67]: Results for new \xCC search after running the script

The fourth result indicates a potential issue with function because the name is not appearing. Jumping to
there, we can easily notice that there isn’t any indication for the end of function, as shown below:

2B ; - - - o s s s oo
S924E8

5924E8 loc_5924ES8: ; CODE XREF: ab_LlLoadlibrary_GetProcAddress-
5924E8 push esi

5924E9 push ebp

5924EA push esi

5924EB push esi

5924EC mow esi, edx

5924EE mow eax, SEB44D1ER

5924F3 mow edx, BB5CASB5Vh ; kernel32.dll!b’'IsBadReadPtr’

5924F8 mow ebp, ecx

5924FA call ab_hash_resolving 2

5924FF test eax, eax

592581 jz short loc 59258F

592583 push esi

592584 push ebp

5925a5 int 3 ; Trap to Debugger

592586 int 3 ; Trap to Debugger

B T L e e
592587 db 85h

[Figure 68]: Results of searching for \xCC byte after running the script

Fortunately, we can fix this issue easily by putting the cursor on its first address and pressing E hotkey,
which will solve the problem. Now, running the script a second time and repeating the search, we have:

49 |Page

https://www.hex-rays.com/products/ida/support/idadoc/713.shtml

https://exploitreversing.com

Address Function Instruction

Jtext:00587950 align 10h

dext:005934F2 dd 247C8857h, 8B075808h, 53000h, 1974C0000, OFD30h, 3D1274C0h
Jdext:00595F 79 dd OFFDOF3ESh, 74C085FFh, F5FFS60ER, S85CCCCO0h, 330A74C0h0
Jdext:00596BA0 dd FC8B5756h, F7800C24h, 0B21765314h, OB763AT35h, 0CTES2A48h
JGext:005994 28 align 10h

Sdext: 00599434 align 10h

[Figure 69]: Results of searching for \xCC byte after running the script for the second time.

That’s perfect! We got replacing all int 3 instruction pairs in the .idb database by our bytes representing
call eax, but without changing any of data information which also was in the .text section. Additionally, we
didn’t need to create a new patched binary.

Once again, we can check the pseudo code of any of routines that contained int 3; int 3 trick to be sure
that they are correct and fortunately we realized there is a better and cleaner code, as shown below:

1 dint { stdcall * fastcall ab CryptGenRandom(int *al, int a2))(int, int, int *)

21

3 int (__std:all *CryptAcquireContextll_B8)(int *, _DWORD, _DWORD, int, unsigned int); // ecx
4 int w5; // ek

5 dint (__ stdcall *CryptGenRandom_ B){lnt int, dint #*); //f eax

6 int v8[4]; // [esp+1Ch] [ebp-18h] BYREF

7

g wg[e] = e;

9 CryptAcquireContextl_8 = ab_hash_resolving(
1@ advapi32_dl11,
11 CryptAcquireContexth 8);// advapi32.dll!b’'CryptAcquireContexth”
12 a

3 - Contextll 8(v8, @, @, 8x18, ©xFeAEEEE0)
14 && ab GetLastError(l))
15 {
16 return ab_memset(zl, @, 22);
17
18
19 1 @ = ab_hash_resolving(advapi32_d11, CryptGenRandom_8);// advapi3d2.dll!b’CryptiGenRandom’
20 om_@)
21 CryptGenRand 9 = CryptGenRandom_@(v5, a2, al);
22 if (w5 && w5 1= OxFFFFFFFF)

3 return ab CryptReleaseContext(.J},
24 return CryptGenRandom_8;
25 %

[Figure 70]: sub_59494C routine: general aspect after running the script

Now, we finally have a bit better binary, which we can complete the markup process, and to be able to
interpret new findings and pieces of code.

There are other aspects and portions of the Dridex code to be analyzed and this is a time-consuming task,
obviously. Furthermore, we need to establish and focus on more objective goals because we have enough
functions to spend several days in trying to analyze them.

Basically, we don’t have vital information until now: strings and IP addresses used to connect to command-
and-control channel (C2) from malware’s authors.

Anyway, | have adopted the same guideline of past article in visualizing .data and .rdata sections (CTRL+S
hotkey) and, from there, finding important routines manipulating and decrypting these data blocks.

50| Page

https://exploitreversing.com

Choose segment to jurnp

O bt

Start End R W A D L Align Base Type
00531000 005394000 R X L para 0oo1 public
00594000 0059A0&0 R L para Qoo2 public
00594080 0a5900a0 R . L para 0aoz2 public
Qa590000 Q059EQ0D R W L para Qoo3 public
0059E000 0059F000 R L para 0ao4 public

Line 1 of 5

QK Cancel Search Help
[Figure 71]: Binary’s sections

Choosing .rdata section and jumping to it, we have the following content:

.rdata: 8594868 unk_59A868 db 8D4h ; DATA XREF: sub_581808+188to

.rdata: 08594061 db 67h ; g

.rdata: 08594062 db 3Bh ; ;

.rdata:B@59A063 db 2Eh ;

.rdata: 88594864 db 94h

.rdata: 08594865 db BE3h

.rdata: 08594066 db 32h ; 2

.rdata: 08594867 db 8ACh

.rdata: 08594063 db 71h ; q

.rdata: 88594869 db 4ah ; 1

.rdata: 88594864 db @AAh

.rdata: 88594868 db 68h ; h

.rdata:8859486(db 8Fbh

.rdata:B859A06D db 5

.rdata:B859A06E db 1Dh

.rdata:B@59A06F db 9

.rdata:B@59A870 db ©@D%9h

.rdata:Ba59A071 db BFCh

.rdata: 08594872 db BE4dh

.rdata: 08594873 db 7Eh ; ~

.rdata:0859A874 db 99h

.rdata: 8594875 db 9Eh

.rdata: 88594876 db @Ceéh

.rdata: 88594877 db 9Bh

.rdata: 88594878 db 68h ; h

.rdata:B8594879 db SFh ; _

.rdata:0859A07A db 2Bh ; +

.rdata:B@59A87B db BAAR

.rdata:8859487C db 55h ; U

.rdata:Ba59A87D db 64h ; d

.rdata:B859A87E db 7Bh ; p

.rdata:B859AB7F db 83h

.rdata: 08594050 db 7Fh ;

[Figure 72]: Start of .rdata section

As readers can realize, there one reference soon at the beginning of the section. Checking the reference (X

hotkey) and jumping to it, we have:

51| Page

https://exploitreversing.com

25
26
27
28
29
38
31
32
33
34
35
36
37
38
39
48
41
42
43
A4
45
A6
47
43
45

if (LOBYTE(v15[@]))

1
FullProcessImagellamell = ab_w_QueryFullProcessImageNamelb(v2);
otr ab encoded data 2 = &ab_encoded data 2;
if (FullProcessImagelamell == @x28)

otr ab encoded data 2 = &b _encoded data 1;
ab w_rcd_B8(v28, ptr_ab_encoded_data_2, @);
sub_58F6CO(v21, v28[0]);
ab_ww RtlFreeHeap 8(v28);
v1® = sub S8FGAB(v21);
sub_58F828(v18, v18);
v11l = sub_58F4BC(v21, B);
v12 = sub_58F4BC(v1s, 8);
sub_5878B4(22, v1l, v12);
if (ab_w_QueryFullProcessImagelNamel(v2) == 8x28)
{

ab_memset(v29, @, @x47C);

v29[Bx183] sub SBFACC(=22);

v29[8x1e1] Bx56473829;

sub 58281C(v29);

v29[ex1e9] = v17;

v29[ex18A] = vie;

sub_S58FADC(v19, v29, 8x47(C);

vl3 = ab IAT 1(v18, v2, a2, @x4BC, v19);

[Figure 73]: sub_581000 routine

I've already renamed few data references and variables and, much more important, | renamed the
sub_59214C routine to ab_w_rc4_0 because within it there is a call instruction to the real RC 4 routine:

1

[B S R R BT A

11
12
13
14
15
16
17
18
15
28

DWORD * stdcall ab w_rcd @(DWORD *al, int data_to_be decrypted, int a3)

1
// [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]

sub 58DFAC(al, ©x2800);

v3 = *al;

%3 = 8

sub 58F37C(ptr_raw_key, data_to_be decrypted, 8x38);
ptr_key = sub S8FABC(ptr_raw key, 8);

ptr_key 1 = sub S5BFACC{ptr_raw key);

ab_reverse bytes(ptr key, ptr key 1);

vie = v3;

vl2 = a3;

Vil = @;
va[B] = a3 == @8;

key = sub S8FABC{ptr raw key, 8);

ab_rcd(key, 48, data to be decrypted + Bx38, Bx7FFFFFFF, 8, sub 59341C, v9);
ab_ww_RtlFreeHeap 1();

return al;

¥

It I

[Figure 74]: sub_59214C routine renamed to ab_w_rc4_0

52| Page

https://exploitreversing.com

The routine ab_rc4 is the new name of sub_594B38, which clearly it’s a RC 4 routine (we learned about

RC4 in past articles of this series), and it is partially shown below:

[TS YRW R AT Ay

B e e e e e
[B s LR B S Ty Ny Sy

19
28
21
22
23
24
25
26
27
28
29
3@
31
32
34
35
36
37
38

23

L
=

void fastcall ab rcéd(

int al,
int a2,
int a3,
int ad,
int a5,
int (_ stdcall *ab)(int, int),
int a7)

if (2l && 22 && a3 && a4 && (a5 || 26))
{
for (1 =8; 1 < 8x180; ++1)
{
vle = *(i ¥ a2 + al);
V21[1] = i;
*(v22 + 1) = vle;
¥
V1l = @;
V12 = 8;
LOBYTE(v13) = ©;
do

while (w1l <« Bx188);
if (ad >80)
{
v1s = @;
vle = 1;
LOBYTE(v17)
do

1
while (1)

I
=
-

[Figure 75]: sub_594B38 rename to ab_rc4

'/ [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+"

TO EXPAND]

Returning to sub_59214C (ab_w_rc4_0), from Figure 74, readers might be wondering how | got such
conclusions, but they are quite easy to understand the decisions. First, look at lines 8 and 17 (Figure 74), as
shown below:

sub_58F37C(ptr_raw_key, data_to_be_decrypted, 0x30);
ab_rc4(key, 48, data_to_be_decrypted + 0x30, Ox7FFFFFFF, 0, sub_59341C, v9);

There are few points:

data_to_be_decrypted argument is the second argument from sub_59214C (ab_w_rc4_0) and it

comes from the call on line 31 from sub_581000 (Figure 73).

53| Page

https://exploitreversing.com

| know that the first 0x30 bytes (48 bytes) is the decryption key because the second argument of
the call instruction for ab_rc4 routine (line 17, Figure 74) is data_to_be_decrypted+0x30.
Additionally, on line 8, the sub_58DF4C routine using the same block of data
(data_to_be_decrypted parameter), and the third argument is exactly the same 0x30. If readers
examine the sub_58F37C routine, you will confirm that it is a wrapper to memcpy() function. Thus,
the first argument of sub_58F37C routine is a pointer to the key, which | renamed to ptr_raw_key.

This pointer is used as argument of ab_reverse_bytes routine (sub_594928), which readers can
check its content and confirm that it takes the passed array of bytes and simply invert them:

== M

o [I R N N [NSy S

ca

9
10
11
12
13
14
15
16
17
18
19
20
21
22 }

har _ fastcall ab

_reverse_bytes(int raw_key_member,

int ptr_raw_key_ 1)

int counter_2; // ebx
int counter_1; // ecx
char result; /f/ al

counter_2 = ptr_raw_key 1 - 1;
if (ptr_raw key 1 -1 > 8)
{
counter_1 = 8;
do
{
result = *(counter_1 + raw_key member);
*(counter_1 + raw_key member) = *{counter 2 + raw _key member);
+counter_1;
*(counter_2 + raw_key member) = result;
--counter_2;
¥
while (counter 1 < counter 2);
¥
return result;

[Figure 76]: sub_594928

As a reference has been passed to the sub_594928 routine, so the result is also the same content
of ptr_raw_key, which it was already inverted.

Examining references (X hotkey) to ab_w_rc4_0 routine (sub_59214C), we realize it called seven times:

5=

Directio Type Address Text

= up p sub_581000411D call ab_w_rcd 0
@ Up p sub_58783C+A call ab_w_rc4 0
@ Up p ab_IAT_1+11F call ab_w_rc4 0
= up p ab_code_injection_2+4E5 call ab_w_rc4 0
= o. p ab_InternetOpeniV +225 call ab_w_rc4 0
@ D.. p ab_Internet_2+234 call ab_w rcd 0
=o. p sub_59913C+24 call ab_w_rca 0
Line1of 7

Ok Cancel Search Help

[Figure 77]: references to ab_w_rc4_0 (sub_59214C)

54 |Page

https://exploitreversing.com

However, there is a further detail. The ab_rc4 routine (sub_594B38), which is the real RC4 function (and
not a wrapper) is called 9 times (once again, check it using X hotkey) and one of them is by our ab_w_rc4
wrapper function (sub_59214C), as shown below:

[E=
Directic Type Address Text
@ Up p ab_w_rc4+A5 call ab_rc4
@Up p ab_GetEnvironmentStringsi +25C call ab_rc4
@Up p ab_ReglnLoadkeyW +461 call ab_rc4
@Up p sub_59138C+3D call ab_rc4
@ p ab_w_rc4_0+ER call ab_rc4
= o. p sub_594A00+6E call ab_rc4
Eo. p sub_594A00+F4 call ab_rc4
Eo. p sub_594C74+5A call ab_rc4
Eo. p sub_594C74+4D5 call ab_re4
Lined of 9

Ok Cancel Search Help

[Figure 78]: references to ab_rc4 (sub_594B38)

Therefore, we know that this malware sample is massively using RC4 algorithm to encrypt its data blocks
(hopefully strings and/or IP addresses), and in all cases using the same scheme:

= [48 bytes key] [encrypted data]
We should remember that key was originally inverted, so we have to fix it before using it.

Eventually, there can be new layers of obfuscation and encryption, but for now we don’t have any further
clue. That’s what we know so far:

= RC4is being used by other routines, and readers can get information about the RC4 algorithm from
https://en.wikipedia.org/wiki/RC4.

= Relevant encrypted information is stored on .rdata section.

= The information is stored and organized as: [48 bytes key] [encrypted data]

= The key is stored with its bytes inverted.

= We need to extract the information, and separate it between key and data.

= |tis necessary to invert the extracted key before using it.

= We have to use the key to decrypt the encrypted information using RC4 routine from a library.

We will be focused on strings and eventual IP addresses that might appear during of the process. If we find
other type of information (configuration files, binaries, shellcode and so on), we will only save them to an
eventual and future analysis to not make this article bigger than it is.

There are two ways to proceed:

= Writing a pure Python script.
= Writing an IDA Python/IDC script.

As | have already used IDA Python/IDC previously, | will write pure Python scripts (using Jupyter notebook
as environment), which makes easier to readers to adapt it and debug any issues.

55| Page

https://en.wikipedia.org/wiki/RC4

https://exploitreversing.com

Anyway, | will be showing a first version of script, but it is not the final one. Why? Because the presented
results will demand further attention of us, but | always like to show the true order of issues during the
analysis and reproduce what | did to move forward. | have commented the script for helping the reader,
but I still need to explain decisions of few lines:

import binascii

import pefile

import basef4

from Crypto.Cipher import ARCA

[ST o I -y Iy L B

This routine decrypts RC4 encrypted data.
def data_decryptor(key data, data):

L |

2
g data cipher = ARC4.new(key data)
18 decrypted config = data_cipher.decrypt(data)
11 return decrypted config
12
13 # This routine extracts and returns data from .rdata section,

=
E=1

.rdata section address and file image base.
def extract data(filename):

Lr

16 pe=pefile.PE(filename)

17 for section in pe.sections:

18 if '.rdata’ in section.Mame.decode(encoding="utf-8").rstrip('x88"):

19 return (section.get data(section.VirtualAddress, section.SizeOfRawData)),\
28 section.VirtualAddress, hex(pe.OPTIONAL HEADER.ImageBase)

21

%]
Pl

This routine calculates the offset between the current address of the targeted
data and the start address of the .rdata section section.
def calc offsets{end addr, start_addr):

data offset = int(end addr,16) - int(start_addr,16)

[
L

Lr

26 return data_offset

27

28 # Print decrypted data.

20 def print_data(data):

38 for item in data.split(b’‘\x@e\xea"):

31 final data = item.replace(b'\x8@', b'').decode('utf-8")

32 print(final_data)

33

34 # encrypted string addr: start address of the encrypted strings

25 def show_data(encrypted string_addr):

36

37 # Next two lines extracts .rdata section’'s information.

38 filename = r"C:\Users‘\Administrador\Desktop\MAS\MAS 7\mas_7_ unpacked.bin™
39 data_encoded extracted, sect address, file image base = extract_data(filename)
448

41 # Next three lines find the RVA of the .rdata section, the absolute address
42 # of the .rdata section and the offset of encrypted data respectively.

43 data seg rva_addr = hex(sect address)

44 data seg real addr = hex(int{data_seg rva_addr,16) + int(file image base,16))
5 data offset = calc offsets{encrypted string addr, data seg real addr)

56| Page

https://exploitreversing.com

o oh
o =~ h

W0

e |
o M E W R = @&

e el =
oW =@ D 00 =]

def

Looking for the end of data and key bytes.
d off = exé
if (b"\x@8\x88' in data encoded extracted[data offset:]):
d off = (data_encoded extracted[int(data offset):]).index(b"‘\xea'xea")

This Line extract the encrypted data
encrypted data = data_encoded extracted[data offset:data offset + d_off]

Splits key and encrypted data, and reverse the extracted key
key orig = encrypted data[6:42]

key_reversed = key_orig[8:48][::-1]

data _orig = encrypted data[48:]

These commented Lines were initially added to

confirm whether the script was really working as the
expected.

#key _hex = binascii.b2a_hex(key_orig)

#print (key orig)

#print (key _hex)

Finally, it calls the routine for decrypting data.
decrypted = data decryptor{key reversed,data orig)

Print the decoded string.
print_data(decrypted)

main():

print({"\nDecrypted Data:")
print(16 * "-" + "\n")

data location = ['8x59C568°, "8x59C5C8" , "@x59AF88" , "@x59CH68" , "Bx594868" ,\
"Bx50A6CH ", 'Bx50B848 " , "Bx59B988 "]
for addr in data location:
print("\n[*] Data at: %s\n" ¥ addr)
show data(addr)

if name == "_ main_ ":

main()

[Figure 79]: first version of the decryption script

As readers can realize, the script is basically composed by two parts, where the first one is a series of
support routines, and the second part is the main routine. Based on collected references to ab_w_rc4_0
routine, | searched for such referred addresses in the .rdata section that points to encrypted data block
and created an array with all these addresses. For while that is an appropriate solution, but we will change
it soon. There are other references to encrypted data blocks, but | am not concerned with it. The output of
the script is shown in the next page:

57| Page

https://exploitreversing.com

Decrypted Data:

[*] Data at: @x59C56@

Connection: CloseTransfer-Encoding

[*] Data at: @x59C5Ca

GET
POST

[*] Data at: @x59AFS@

Starting path: ShellFolderS90Y1NFUvYSNIRDSpi8EgHESES8gPIcU; zwTHMB1SiSgHNmlgIchyvE
g615ioc@XHEArTdeCydagyrIiplBzPItrelc82jktThgegPlTdyGg<autoElevate»truetruaefalse<Ta
sk xmlns="http://schemas.microsoft.com/windows/2@84/82/mit/task™ version="1.3"><R
egistrationInfo></RegistrationInfo><Triggers><LogonTrigger><Enabled>true</Enabled
»¢Userld»</Userld></LogonTrigger><TimeTrigger><Repetition><Interval>PT38M</Intery
al»<StopAtDurationEnd>false</StopAtDurationEnd»</Repetition»<StartBoundary>282a-8
1-81Tee:e8:88</StartBoundary»<Enabled»>true</Enabled></TimeTrigger»></Triggers><Pri
ncipals»><Principal id="Author"><LogonType>InteractiveToken</LogonType><RunLevelx»l
eastPrivilege</RunLevel»<Userld></Userld></Principal></Principals»><Settings><Mult
ipleInstancesPolicy>IgnoreNew</MultipleInstancesPolicy»<DisallowStartIfOnBatterie
s»falseq¢/DisallowStartIfOnBatteries»><StoplfGoingOnBatteries»false</StopIfaoinglnB
atteries><AllowHardTerminate»false</AllowHardTerminate»<StartWhendvailable»false
</5tartWhenAvailable><RunOnlyIfNetworkAvailable»false</RunOnlyIfletworkavailables
<IdleSettings»<StopOnIdleEnd>true</StopOnldleEnd><RestartOnIdle>false</RestartOnl
dle»></IdleSettings»<AllowStartOnDemand»>true</AllowStartOnDemand><Enabled></Enable
d»<Hidden>true</Hidden><RunOnlyIfIdle>false</RunOnlyIfIdle><DisallowStartOnRemote
AppSession»false</DisallowStartOnRemotedppSession»<UselUnifiedSchedulingEngine»fal
sed/UselUnifiedSchedulingEngine»<WakeToRun>falsed/WakeToRun><ExecutionTimeLimit>PT
85</ExecutionTimelimit»<Priority>7</Priority»</Settings»<Actions Context="Autho
r"»<Exec><Command></Command></Exec></Actions></Task><Author>$(@%systemroot®\syste
m32\wininet.dll, -16@@a)</Author:

[*] Data at: éx59CH6@

o061jgKOoobijqkKOoo6ijgkggaggqgqgqggrkgqygp+fn5+1lo60kgqqbgpaqqkrOwsaWt67WvaPFos0fwSyqq
qygvwh/EXSBTWE/AQGQen 2XWVIZWY1 /WV1gfXo,/ W1 ZWV1ZWY1ZWW1Zmoh9WVBQUFBZWV1ZYZRhn11ZhY
mSo2Bghv1ZWV1ZWv1ZWvmf AQMBBAPVASWBYAPWEBAQEFBQUFAUTCAgTAEBAQHEARAAAAAAAQHAWHARAZM
RAWMEAAAUAATAAMBIAgICAgALS // / S wAAAP /KAQEBAAY ABADAWZEBAWH, /WEAABTExgMBAQH, AwMDy EAA
CgAEAAAAAHBAMWEAAAAAAAD v/ / / AAAAAAC AAPBAAAAALAAAALAALAAAALP S f AAAAVWAAAAL AL LR AT WAL S
BpKSkpLUkpKSkpPTEpKSkpKSkpKVUVASKpKRVINRKpdSkpKSkpKSkpk SkpkskphY2d0oskprbUpkRW1KSk
RFSkoAAAACDQYGEEYOAAAAAAYGEEZAGBEIGAAOKBWCGAEZUF AT AAAQEBAQAAAADBOYGBEEGALATABAAGAL
gACgAMACAAYTIBhgD2z /4 / quCWALEASWCE+L s AWADBAMe /Y vBA] BAXPBAXTBA/ / /rAfB0EgEAEWkAFZEA
FukAKwlkArvBHs vBATPEBATFBAWWELA/+/SwgABATA

58| Page

https://exploitreversing.com

[*] Data at: @x59A86e

DOYAAFUCi+xRTINWwfIz21fs+TsDE3RG0FAQqxLbDulGBNRIKHFTALADYP/RiDkoOYcIdCELgQzrE7BBA
48EMIMAg3ITE/zDI13D5w4E Leer2dyxgdfi3HNkdKGQWosCHOEBN8GAkcRThoGYAL jeDBUNEBIOgdg /41drE
g4iFZTpzIBX15bycNTKkYOQILhNY1ogVang3ICUZ jkCAAMHMEDR/ gN/YTtyPIPygT5QRQOYIXXEGIHIYNQ
8g2¥sA0PoMBRODOBT amQES jAnvd6bDejrIsgBPotdYPzkhcBabxNiWHFQ/2dFAH@2AmsBfMqF 2w+Eod 6t
ahRKCI1IRXBGLEI3QOwx1IErkrsrxEuwbtGHpa79xGEYMBgiI7BATiOXBAVAE /IBUZHXwodOXTITAT sxAU
JymBwPDiQ¥iWDRKHg423sAPTBgUMOTAg8QM jUWBGGYHO1AGC 20mWY Ry CxxD+InBDIXIdCCMFPWDVFHUS3
CEMB3waNzSULNT3kQbC0sd3d1I0ThiHhboBxtQM3ZKi8CzZEDpSOnDMSgSDHY JIAXKSk3TalYrQTSeolZ
BhBaKDUKQNA+VIWQIRV+HRAaz CAoB@DwuTQW7HwgMgIBk3cjUEIDGHsBASDEeT IwTH+/ w1 205mK 7 LQI2ZNGE
cOJuBCDI+hFzdTABVAvEeT+FsDAFsAUWRZfTwZoPuAnNz8VASWNIhy ET4A8AK/ 6C s 3WFhHYEME4Exh1F/
WHKSCCFMe+c IYBphBLBFY3SKNZNRXRDUA+Z FQFM+oP2EJE/MQdA/ TovhPQtIM2pG2wlWN1DsFc2hLEaoB0
SgHL5hNgQ345E/Tt4iYChrECArEMg7PNOTUDXWSez TexBUiIP++UGLYTPAL FHQK uwoDXF TTOZT rES5sYF v
LvezIR6CBECNIvUIIeQclDA+zBqqRBagCCZR1pCZ4ASY suwD4ZwcGDPBhgPzuQj/1AOHXQE1QNINCKqe0z
MEAUQdnSkHiwQ/ 1Vsgmyvt FACBC2ZABHBIMUSqrkxLpLGQT5IMQjw/D7STHRSY3AWRSBIVAj11bnh1IR0OAQ
woAdAZ AZBVAFYPgAgcUEwgMhAdALIDSBEHYB@BSHSBFkO5 sHWDamCXIgLUFQISFiTFp/Pd14LMEnBxA+1+w
SaPMybSDEDYGQOYMpESATVWS iIHMDkSDAxwq3ZQMLgogHQNF1dqARMRCSTQid6K 2kc FEYHgiNz 3Hdobejk
GI9GIFkcsCBZRDgGLolteX+MeusbIz+hIafulgpHr7uYrKRiI9HNUI Y YM7bgYmTP/CgJElsYECFHommMBC
RVWIdSHE/rYoX999MgbAdBOWBEP+WLKwI1KUQQIwhlkngezCVTWSZFNKBMVKFT/LLalkzMSOAdHyIwZFdAT
CHVRBBHNnmgUQAds+i1¥iImGURxevPwoFBSUUCxxG4sTiajO06Bequmhe08c/dBOVIYoVFVemFUBSIRQ+KE
gyolIQYVbeDDm+GCF1ZKwSHDIoEIZUoAa00INZrGEWALo+ECPCLUCEKIWDVOS27kEBUsSNFI1113fQvsh
B85vBNesKIgAA=

[*] Data at: @x59AsCe

JQcAAEgHRdIPhMUNAUSIXDMKCAp@GSEXT IPs6oAxehwmioqGBv18GepgAgZKCEUZPBBE/HY 0ANIMABLE /S
OHGYUNFg3sQwHQ3edsFEP/ IBmPweF cxSxAqQPPEDCjsWDIb/ 19gEt+70G3nmTEpBNDaPMCGEYDDATSaesT
WMdCVkZDgkOA1MIUQM76tU2EBBueCAW+Dyf4+NkS]/ IVx00j3NKMOALBiHQRr/@BIGtjAKg7bOXAXEIF/
DzDDHVYVZXOUFUdunftQXMi+xBzeCATVpDO+0BBUFmOQI8EBHLEbIAVGNYPOEDBVKBP1BFGiF161pGMEDbM
6/ xQ3BTTQZHTKFiXdE2Zh11X+gP+5RcckShlwzgRICAWOQqUSWEMMHYEUHSIVPDQEsoQTUEK /SNAATPTA
ny7TQeFonSLSSKMIIDDugjBgUSNQhhCPLCZ 2/ gkCHYNI9ZFulLwOQAGUp330QipoI+1Dz6wrcDoIRBLAGE
CIEMOIwxzm2GZUuNUGUMANnkIviwYeUsobDb3APGoYIHGLE] 74MGVWgPL8sUPYRVAGZEDLEGe ILCAHQBKIP
nRvijiaAMRT1+HmMiG178z8QGExTaGRRWBIDV Iz LVZhKXggkay Az CkYArAx+HBBOUFzB5yRUyo83NMUT
Cia¥zG2+tvfjIABHSYPGKOLhBt75F1ckIvBeTHFGSCEISHMhhSGVFF/LDDmYtB1ef3Uok LAWCEPTE2TTH
8iKQgSgE1TIHIYPoSYdxy3Kp/qH6dkIBmI4COMHOHWYBAF3gWoP4A3RiDgoKdWBCYBEUTEEEOTIHERY DT
GBgSDDMsIChOmPnv7 7uSHEDTvBcr6x1cbQo jWWHSWqoUAMXBIQLZ zAXGI+1KMICigH3vgf It JkEmGFFA
LCt+0ReCze3YPmldASaNrSBAGGYIBZDAWNZNpHy IbPKBPOMRTWSIhThBpPgkcQTWkdI+BPGIkBgf /BTGP]
MhOePpThAzYiuCvrGhY/TCnUZXoM8Cgk13312FRUKEBWIRL34DxhNAZTD xMOQT kFO30QQDoRd2Qh15b0GE
vFrCiGMv27zBv13dDDyK84WuRQBIYAGUNAGQTCEBCIUFSEZIB80AKEaug2 v/ WODLCAdEgyQRTDCDYBdcdAlt
P2oVXFFCYWTBsk8BTwhPCSpyvbrKIv12FYYBC2ZKBcOnTUrUBcXyNsCBBCEakifiofBMszocvuGdOlk/Ag
RKCQbotM/B6APCGPMoabDoIezpwlI3vI0Drkw? LATcATxBvSDHIWPIDQIGITITPgKtBI1THEUASAABK2EUD
ggqDAdks0sEVEWWPkl+26iNYIEpAM3SYIaGEBEQKXhSIdAmDaLlrprRYRCETBI IFwQfhICBV21H/ 3vyx77
wnvecijIKTXRnBialvéor/ /xko3Rv870/EVjF3HassBX1godNPDOK2ACMSBAZ1YksZWFRPICL FWkMicolu
3sgVwH jJAFIDBTKurjIVY jagd ZHHAEWhMcGNCSApPuw? xxAQV+dXh1dnVz 7dX3DL1VTOWG3Y / FYSsIEQEKA
mZTihBVDDIghMS2RB255/BDtiTVBDYANBiXwkSX5AWI13SvAM/ TjkTPow3 jsoCdoXD8igQE452751111
Q7jx/ESNUUBIN3R49qRj61cDKZIIB00hogEMhGYKS /H4MUF8Y4nYMgK TCQEaH7PqpYDaIUURm/oYAiklUoE
ok 5QbmWQK1e0gTugBClgeMwyYvalICuGsSxAes38hjKarh0jz+ZRy zY¥AoHXirKD4YySoYSshceGgXshglad
ZBN+zAAYOTKOKGdZ5DQz Ahy IMDGDFTQIIZu8y Ts10gk FATQUgEI rPdSRAUVRUH3mMmMI1eFF11EyFaikel3
UM1J8104IIFiGKCcOSHxiFAA==

59| Page

https://exploitreversing.com

[*] Data at: @x59B24@

9QAAAFUCi+yDhyxTVNN1CNBGOF cAagdZUYIN/ 187 Tjy8UABFCPOWFIPEfgzy 7PpqZy AN/ GuICMWU /ywYd
TPk2w+LRN4krARmAgyNTFERCNZTZDZmdubdoCNB3n@gMn3cBUAEBAFA4BVT/FlpwaHAQAUNIVyoKSEpuUCH
1h099145g06Gkki98u/ulcAVCTekAZIQREQWr7ANyPiF70¥0hSgomyjdSDIOSAXTADYjtXASAiegzqdmy
@DhCUYOQMHF2ekxz JwgQuAk==

[*] Data at: @x5oBo93@

kKAEAAEADVVNWNVEFULLET jWwkddEcgeyYNwLDiokCBklwQbgHeg AZNUIhMHolFdzoPTW/ /bSge7Gd IPYPOP
Exv]14dvb8e lwlUG5IEACIUQkEYZCMDP2LN17dEUBZg0LBAN]1S8M2C0s4Ck L3 IXB T XvHVOsEFGA4ZFBADT
hUAmhNZ fertyMzyXmiiMy QuIecoutYM3uoNT /g50e JkGRNOTUNE7 zZWwP+DUShOoBGIaBAQhDrjYE3vOWT
FDLIV/UbCsB1ivhfZgDBTYSSmICBQ2MYPPFALIgxpEPxxCeg@wPhU7+A0Tdg7op4iDe6NhRTO1dvBCYRSa]
g91DYDE7D3nZHDX*UR swbUACIQIACUVZNE JFCUCHCKKEFIFTQXahvenExXGIRLaLIYELIADTQdiD1gBxERYD
UFeHVxTBltdwwi=

[Figure 80]: output from the first version of the script

As readers can realize, the first three outputs are in clear text, but the next ones are not. Of course, these
output are encoded in Base 64 and our first measure would be decode it, but there is another issue to be
handled, which | didn’t show you yet.

There is an important detail to comment: one lines 29 to 32, | defined a routine named print_data(). This
routine was necessary because without including it we would see the following output for the second
address of the list within the main() routine:

Decrypted Data:

b GYxeEE \xeeThxea \xeehxe0P \xea0 \xees \ xeeT \ea \ xea \ xae \ xee '

[Figure 81]: output for the second address without any manipulation.
We see that:

= The output is an array of bytes.
= There is a \x00 (blue) prefixing each letter (I only marked once to not pollute the image)
= There is a \x00\x00 (red) separating each word

Thus, on lines 30, 31 and 32 we:

= separated words
= removed all \x00 prefixes.
= converted to string.

Although readers might not remember, we already saw similar manipulations (not equal) in the third
article of this series (MAS 3), which showed details about the Emotet reversing. About the Base64 strings,
we can decode them now, but before doing it, we have to pick up one of address of the array (for example,
the last one), and examine code around the call to ab_w_rc4_0 routine (sub_59214C), which is using such
address:

60| Page

https://exploitreversing.com

129 LODWORD(w135) = w35;

130 sub_58F584(v1ll, 8);

131 sub_58F584(v110, 8);

132 ab w rcd B(v142, &Runk 598988, 8);

133 sub 58F6CO(v111, v142[0]);

134 ab_ww RtlFreeHeap B(v142);

135 w36 = sub_58F6A8(v111);

136 sub_58F828(v118, v36);

137 w37 = sub_58F4BC(v111, @);

138 w38 = sub_58F4BC(v110, @);

139 sub_5878B4(v5, v37, v38);

148 w128 = sub S8FACC(v118);

141 w134 = sub SBAFES(v95, 0x20000000, 128 + 2);
142 w127 = w39;

143 LODWORD(v40) = sub SBAFES(v95, Bx30000000, Bx82);

[Figure 82]: piece of code within sub_589088

The ab_w_rc4_0 (sub_59214C) routine is called on line 132. On the next line the sub_58F6CO0() is called,

and part of its content is the following:

26 do

27 1

28 ++u0E;

29 if (w2 »= w17)

38 break;

31 v9 = v28[vd - 1];

32 v2 = Bw28[vE];

33 viB = w9 - Bxdl;

34 if ((v9 - Bxdl) «= 8x19)
35 goto LABEL 12;

36 if ((v9 - Bxbl) <= Bx19)
37 1

38 vle = v9 - Bxd7;

39 goto LABEL 12;

48 T

41 if ((v9 - 8x38) «= 9)
42 1

43 viB = v9 + 4;

44 LABEL_12:

45 if (v1@ == @xFFFFFFFF)
46 goto LABEL 19;

47 goto LABEL_18;

43 T

49 if (w9 == "+")

58 1

51 vlg = '»';

52 T

53 else

54 1

55 ifF (wo 1= ")

56 1

[Figure 83]: part of sub_58F6CO routine

6l|Page

https://exploitreversing.com

As we already had discovered by inference of decrypted strings, this sub_59214C routine handle the

Base64 decoding and there is a well-known library to decode such strings, so it is not a problem.

Returning to sub_589088 routine, on line 139 there is a call to sub_5878B4 routine. Moving inside this

routine, we have:

1 void _ usercall sub 5878B4(int al@<ebp», BYTE *a2, BYTE *a3)
24

3 '/ [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]
4

5 BYTE4(v5) = Ox88;

6 wvb = 8;

7 LABEL_2:

8 Fadsr = Falesg

9 LOBYTE(v6) = 2;
16 while (1)
11 {
12 v5 = sub_587937(SBYTE4A(v5), a2);
13 if (1vld)
14 goto LABEL 2;
15 v/ = sub_587937(SBYTE4A(v5), a2);
16 if (tvld)
17 1
18 vll = sub_587943(v7, a2);
19 vl3 = v12 - vb;
20 if (1vl3)
21 1
22 v5 = sub 587941(v11, a2);
23 LABEL_2@:
24 LODWORD(v5) = al;
25 LOBYTE(vE) = 1;
26 goto LABEL 21,
27 h
28 LODWORD(v11) = (v13 - 1) <« 8;
29 LOBYTE(v1l) = *al++;

3@ v5 = sub 587941(v11, a2);

31 if (v5 < @x7Dee)

32 1

33 if (BYTEL(v5) »= 5u)

34 1

[Figure 84]: part of sub_5878B4 subroutine

This routine doesn’t provide us many clues about what is really happening, but there is a subtle evidence

that readers can use: the constant 0x7D00 on line 31.

This is a well-known constant used by APLib decompression method and, even readers didn’t know about,

a quick search on Google would confirm that my statement is correct.
Now we understand the sequence of events:

= encrypted code > RC4 - Base64 > APLib

62| Page

https://exploitreversing.com

There are two interesting projects that are enabled to handle APLib code:

= https://github.com/CERT-Polska/malduck (by CERT Poland)
= https://github.com/snemes/aplib (by Sandor Nemes)

Therefore, we must change the first version of this script to manage the following points:

= Decoding Base64 (when necessary)
= Decompressing the result from Base64 using APLib (when necessary)

| prefer using malduck package because it offers support to a series of algorithms such as AES, Blowfish,
Camellia, ChaCha20, DES/DES3, Salsa20, Serpent, Rabbit, RC4, XOR, RSA, aPLib, gzip, Izntl, SHA1, MD5,
SHA256, and other useful features.

To install malduck, run: pip install malduck

The next version of our script covers three possibilities after decrypting data blocks using RC4 algorithm:
plain text information, decoded Base64 information, and decoded Base64 followed by decompressed
aPLib information. | am going to comment about few lines to make sure that everything is clear to readers:

1 import binascii

import pefile

import basefd

4 import struct

5 import os

5 from Crypto.Cipher import ARC4
from malduck import aplib

U pd

9 # This routine decrypts RC4 encrypted data.
16 def data_decryptor(key data, data):

12 data cipher = ARCA.new(key data)
13 decrypted config = data cipher.decrypt({data)
14 return decrypted config

16 # This routine extracts and returns data from .rdata section,
17 # .rdota section address and file image base.

12 def extract data(filename):

pe=pefile.PE(filename)

8 for section in pe.sections:
1 if '.rdata’ in section.Mame.decode{encoding="utf-8").rstrip('x88"):
2 return (section.get data(section.VirtualAddress, section.SizeOfRawData)),\

section.VirtualAddress, hex(pe.OPTIOMAL_HEADER.ImageBase)

5 # This routine calculates the offset between the current address of the targeted
data and the start address of the .rdata section section.

7 def calc_offsets{end_addr, start_addr):

8 data_offset = int(end_addr,18) - int(start_addr,16)

return data_offset

T T o I T I s S s B
T Pa L [Ts}

63|Page

https://github.com/CERT-Polska/malduck
https://github.com/snemes/aplib

https://exploitreversing.com

31
32
33
34
35
36
37
38
39
46
41
42
43
44
45
46
47
48
49
58
51
52
53

Print decrypted data.
def print_data(data):
for item in data.split(b'‘\x88'x88"):
final_data = item.replace(b’'\x88", b'").decode('utf-8")
print(final data)

encrypted string addr: start address of the encrypted strings
def show data(encrypted string addr, base = 8):

Next two Limes extracts .rdata section’'s information.
filename = r"C:\Users‘\Administrador\Desktop\MAS\MAS 7\mas_7_ unpacked.bin”
data_encoded extracted, sect address, file image base = extract data(filename)

Next three lines find the RVA of the .rdata section, the absolute address
of the .rdata section and the offset of encrypted data respectively.

data _seg rva addr = hex(sect address)

data seg real addr = hex(int(data seg rva addr,16) + int(file image base,16)})
data offset = calc offsets{encrypted string addr, data seg real addr)

Looking for the end of data and key bytes.
d off = exe
if (b"\x88\x88' in data_encoded extracted[data_offset:]):
d off = (data_encoded extracted[int({data offset):]).index(b’\x@@\x88")

This Line extract the encrypted data
encrypted data = data _encoded extracted[data offset:data offset + d _off]

Splits key and encrypted data, and invert the extracted key
key orig = encrypted data[6:42]

key reversed = key orig[8:48][::-1]

data orig = encrypted data[48:]

These commented Lines were initially added to

confirm whether the script was really working as the
expected.

#key hex = binascii.b2a hex(key orig)

#print (key orig)

#print (key hex)

Finally, it calls the routine for decrypting data.
decrypted = data decryptor{key reversed,data orig)

Print the decoded string.

if (base == 1):
decrypted_base64 = basetd.b6ddecode(decrypted)
print(decrypted_baseb4)
data_len = struct.unpack('<I’, decrypted_basegd[:4])
data corpus = aplib{decrypted basebtd[4:])
print("\n[+] Decompressed Data Length: %d" ¥ data_len)

64 |Page

https://exploitreversing.com

2a
831
22
33
24
a5

- R S

= = < R B]

T Y Y B T L T T B EY T R N R N e N R L T o A R A R N e N = T = = T =
R N S I O o e B S 1 e S Y A e e S T Sy Py NPy ey

def

#print({data corpus)
return{data corpus)
elif (base == 2):
decrypted base64 = baset4.b6ddecode(decrypted)
print(decrypted basebtd)
else:
print_data(decrypted)

main():

counter = 1
dir_path = r"C:\Users‘\Administrador\Desktop\MAS\MAS 7\Saved Files™
returned corpus = b"'

print(”\nDecrypted Data:")
p,rlint(lﬁ * Il_ll + FI\IInIl}

data clear text = ["8x59C568°, '8x59C5Ca", "@x504AF38 "]

data_base64 aplib = ['@x504A868°", "'8x5246C8°", %\
"@x50B248° , '8x59B988° |

data pure basebd = ["8x59C668"]

for addr in data clear text:
print{"\n[*] Clear data at: %s\n" ¥ addr)
show_data(addr)

for addr in data basebd4 aplib:

print("\n[*] Compressed aPLib data at: %s\n" % addr)

returned data = show data(addr, 1)

bin filename = ("filedata %s.bin"™ ¥ counter)

filename = os.path.join(dir_path, bin_filename)

if (not os.path.exists(filename)):
open{ftilename, "wb").write{returned data)
print(”[+] Decompressed aPLib data saved as %s\n” % filename)
counter = counter + 1

else:
counter = counter + 1

for addr in data pure baseftd:
print("\n\n[*] Decoded basef4 data at: %s'n" ¥ addr)
show_data(addr, 2)

__name_ == ' main__ ":

[Figure 85]: Second version of the decryption and decoding script

65| Page

https://exploitreversing.com

Decrypted Data:

[*] Clear data at: Bx59C568

Connection: CloseTransfer-Encoding

[#] Clear data at: 8x59C5C8

GET
POST

[#] Clear data at: BxGOAFE8

Starting path: ShellFolderS90Y1NFUVYSNIRDSpi8BgH6SgS8gPIcY; zwTHMB1SiSgHnmlgIchyvEqblSioc@XHE4ArT4eCydGgyr
IiplBzPItrelc82jktThggPlT4yGg<autoElevatertruetruefalse<Task xmlns="http://schemas.microsoft.com/window
=/2884/82/mit/task” version="1.3">»<RegistrationInfo»</RegistrationInfo><Triggers><LogonTrigger><Enabled>
true</Enabled><UserId»></UserId></LogonTrigger><TimeTrigger><Repetition><Interval>PT38M</Interval><S5topht
DurationEnd»Talse</StopAtDurationEnd»></Repetition»><StartBoundary>2626-81-81T88:00:88</5tartBoundary><Ena
bled>true</Enabled></TimeTrigger></Triggers><Principals»<Principal id="Author"><LogonType>InteractiveTok
en</LogonType><RunLevels>LeastPrivilege</RunLevel»<UserId»</UserId></Principal></Principals»<Settings><Mu
ltipleInstancesPolicy>Ignorelews/MultipleInstancesPolicy»<DisallowStartIfOnBatteries>false</DisallowStar
tIfOnBatteries><StopIfGoingOnBatteries>falsed/StopIfGoingOnBatteries»><AllowHardTerminates>talse</AllowHar
dTerminate»<StartllhenAvailablesfalse</StartWhenAvailable><RunOnlyIfNetworkAvailables>false</RunOnlyIfietw
orkAvailable»<IdleSettings»<StopOnIdleEnd>true</StopOnIdleEnd><RestartOnldlerfalse</RestartOnldlex</Idle
Settings»><AllowStartOnDemand>true</AllowStartOnDemand»<Enabled></Enabled><Hidden>true</Hidden><RunOnlyIf
Idle>false</RunOnlyIfIdle»<DisallowStartOnRemotelppSession>false</DisallowstartOnRemotedppSession><Useln
ifiedSchedulingEngine»false</UselUnifiedSchedulingEngine»<kakeToRun>falsed/WakeToRun><ExaecutionTimelimits>
PTas</ExecutionTimeLimit><Priority>7</Priority»</Settings><Actions Context="Author"><Exec><Command></Com
mand></Exec»</Actions></Task><Author>${@tsystemroot®\system32\wininet.d1ll, -16880)</Author:

[#] Compressed aPLib data at: ex5oAece

b '\xlc\be\xecQNSV\xci\x-F23\xde\xec\x—F9; YB3\ xf3tz8 M\ xlexab\x12\xdb\xBe \xeSF \ x84 \xd4I{q
Shx@3P\xB3I N8B \xF i\ xd 1\ 885 (94\ x87 \x88t. \x8b\x81 \xBc \xeb\x13\xbd4\xB3\x8d x84\ xI8\xB8IB \ x83t \xc1\xFff@\xc8

W07 p o 9N 3N BBKY \xea o fev i foj el e \xb 7 \oclchaxed 9 x1d (d\x16%xa2 W @'\ x87; "\ 3t e lb\ x89\ x 1B\ xFBh\x19

Y x838" \xBd\ e\ xFcP\xdf\xB8 : \ 87 j oo\ x82] \xacHE\xBBVS \xa72\xB1_"[\xc9\xc35'\x01 \x83 283 \xbBMcZ W\x89%\xea
AxFe\x88\ x40\ xB 2T \x83 \ X873 \xcB\xed\xfe\x83 \x7fa; r\x83'\f 2\ xB1>PEAn\x18\x89u\xf4\x18 \x01\xe5" \xd44\x383
e\xec\xel\x03\xe30\x14P\x8c\xed5jd \ x84 \xe6o\ " \xbd\xde\x9b\r\xel8\xeb" \xc84>\x8b] " \xfc\xed\x85\xcOto\x13bX
qP\xffgEi\xed e\ x02k\xel | \xca'\x85\xdb \x6F\ x84 \xa3 \x8e \xoF i\ 141\ @8\ 220\ \ W11\ x8b \x @'\ x0od\xd@; \x8cu Jixe
Axaexcawxtlad2 e\ xlbixbda \ etk \xbfqix18F \ X8\ Xe6 \ X8 \ X8 \ Xe \ X1\ X1 \XBbE\xF 4\ Bl \ x84\ xFFpTixcouix
feh\xad\xe3\xe7 L \x8bE& \xcc@R<\xab\ xB7x83\xc 3\ X80 \x@6 "X4 T\ x1le\xaexla \xde \xcd \xef W xb7TH Y\ x 143 xd 2\ %88\ %83\ x
cANXBCAXBdL\x01\x 18\ %87 ; P\xB6sc\xadY \X84r\xeb\x1cCA\xF8 \x89\xc1\xBc \ X85 \xc ot B\ 14\ xFc\x03TQ\xeekKw' \ x0
A3MNxfehi\xdc\xd2P kb3S xdeDx1byxB8 \ xeb\x1d \xdd \ xdIHB\ kBB T~ \x 16 \xe8 \ x 3\ x1bP3v] \x8b@\xb3d@\xe9H \xed\xc31
(9%x@c|\xa3 \x@5\xed\xe6Mixdfh\x86+A4 \x0e\xalF | \x87B\x83\xb2\xad\r\xe3 \xe5V@\x04U\xfetxke\x80\xae\x1d\xe
I\xc2\xebP [\xbl\xfB\x868 \xca \xB0\xBeM\ xdc\xBdH \x@8\ xBca\xec \xd@\ x84 \xB83 \xed \ned \xf 7 el \xte e\ eB2v; \x9
9%\x8a\xec\xbd\thxdB \xd1\xB81lp\xe2nucf@ ‘oecBi\xfatxllsud: UL oefd\x7Hixell\x@f \x811\x811\x1le \xtd \ ot \x83 \xe
2\x8255\xd1P2\xc2ra\xc8D\xF8 \x03@1_‘\xfe\x82\xb3Iu\x9f \x84 | \x848N\x04\xc6\X19E \xFF \x01l\xca\xf4 \xB851\xef\x
9c B8\ x84\ 121 x 15\ x8d \xd2 (\xdc\xcdELCh\xbB\xef \ 90\ x 15\ x@ 1L \xfa \x83\xFe \x184x81 21 \x8 7@ \xfc\x8a/ \x8
Ah\xfa- \xcd\xa9\x1blyxl166P\xec\x15 \xcdixal, Fixad\xde \xefj\xlc\xbead \ xBa7\xel! ?HNixde" " &\xeb\x18.+\xf@\xc

8; \oed3\x93P<UT \xec \xd3s \x1d \x 14\ x 88\ xF F i\ xbePmX L\ xfek \ 14t \n\xbb\n\x83 T \xfa \ed o x8e \xeb \x87 \x9b\x 18\ x15
Wxfbh\ech\xbFixdchxc8G \xad\xbcxfe) \xfdi\xbdB \ty \x@7E \ xBc\xef \xb3\x86%\xaa\x91\xB5\ xad \ @2\ 1\ x94u'\ xad&xI\x8
b.wxc@\xee\x19\xc1\xc1\x83 0\ x18™ >\ x8b\x 98 \x8f \xFo@Bu \xdd\xebT\r"p\x8a\xaa\x83\xb33\xde \x14A\xd 2 \xF2\x98x
WP BC o OUN b2 B85\ xbAP 821 -\ x881 } \x882 \ xed\xaa\xaeLK\xad \xb1\x980\x02LB< 2 \xef \xbd\ %935 14\ x93 \xfe\x
e x11\xf7\xc2\x15\x82=unxe \x13\xBaC \xefEt \xa8c\xce \xd8\x1b \xco\x15\x83 \xe0\x02 \xa7\x14 \xeb\x08 \x0c\ x84

B 7E 04 AN\ 1F thxee \xcl\axfd\xB4Yixee\xeb \ xc 1\ Fehr\xa® \ k82 \ \ \x8a \ xEbQhx FANE T\ F B\ x83 \x 16 \x o \xcfv ™\ xab

66 | Page

https://exploitreversing.com

WB7@N\x04>ANxDI T ThAx06 \xcl\xfd\x84Y \xBe\xeb \xc 1\ x T \r\xa2 \ kB2 \\\x8a \ xBbQ\xFANE I\ fF BA X033 \x 16N x O \xcfv ™\ xBb
2\t xFa o\ xef\xa2 \xFb\ x84\ x9a< \xcc\x9b\xed>» \x83" di\xBe\xc8\xca | H\xB2\x15\xc1 (\x8789\x12\x8F \x8cp\xab\xc
6PBYbB (W38T 16l W81 13\ 1 1NES \ed B\ B0\ xde \xBa\ xdaG \ @5 W11\ x8 1 \xea \ xB8 \xd c \xF 7\ x1d\xda\ x1b\xd 29 x
B6#d 1\ x89\x16G, \xBb\xcaQ\xBe \ xB1\x8b\xa2[~_\xe3\xle\xbb'\xd& \xc8\xcf \xeBHi \xfb\x88\x82\x91 \xeb'\xee \xeb
+]hx18\xbd\x1eu\x08\x8d\x86 \xBc \xed\xba\x98\x993 \xF \n\x@2D\x96 \xcH \ x84 \ x@8Q\xe8\x9a BE\\\x@8w\x93D\xfe
Wxbe{ \xdf}2\xee\xf3\xed\xec \x81\xeB8\xFf \ %06, \xack)D\x1e# \ xB3uZz \x9e \ xccHS [\ xO6E4 \ xalf T\ xalm'\xfcxb2\xd
a"Lixcck i\ xd@\x1d\x1F" 8duWgs " \xd5DA\x1f\r\x9eh\x14g\x87 1 \xfa" X\ x88\x88 \x86Q \ x1c“\xbc\xfc (\x14\x1fnP,g\x1b
\xBb\x13\x89\xad\xce\xeB\x17 \xaa \xc2hz ; \xc7 2t \x 10! \xxBa\ x5 1 5W&E N\ x1 5@y ! \x14> (H2\xa3R\x168aV\xfa\x@c9\xbe
\x18!udi\xac<\xlc2h\x18\x86T \xad \ x86\x8e8 \ x99\ xf3 \xaca\x16\x@3Z> \x1e# \xed \x83 \xbb\x82 \x88\xa2V\r5\x22 \xdb
\xboaed \xd1kK\riocl4\x89uh "wixd@\xbe\xcBtI\xfeMz \xc2\x88\x88\x088 "

[+] Decompressed Data Length: 1548
[+] Decompressed aPLib data saved as C:\Users‘\Administrador\Desktop'\MAS\MAS 7\Saved_Files‘filedata_1.bin

[*] Compressed aPLib data at: @x59A6Ce

b*hx8d\x87\x08\x88H\x87 \x85\xd2\x0F\x84 \xc5\r\x02\xe4\x89\\35\x08\nt\xad W\xec\x83\xec\xea \x801z\x1ck\x3
b\xda'\x86\x08\xfot xlal\n” \x82\x86I\x@88E3 2 \orcaD \xfov (\x88 \xd2 L \x83 \ xc oA \af Fxd 1\ xcoaCE\x83{ \x1e\xc8t7{ \x8
bl el 8 Fxc 8 \x86 c \xF BxWIK \x18* \xf1\x83\n; \x16\xBc \x86 \x T\ x97 \xd8\ x84\ xb7 \xee\xce\xlby \xe6LIt46\x8
8! 4284\ xc B0 \xcBM& \xDe\ xed \xBE \xBcthddE$8 \ rL\x8dD\ x8c \ xet \xabT \xd8@A \xbo \ xeB\xBB\xc2 2\ x83\ xc B\ xff\x8d\x0
1(hef IV A xa2="2cd W98\ xc 3\ xBB\ x04\x 18\ xB7 A\ x1a\xff \xdB\x12\xB86\ xbE8 \n\ B3\ xbB \xce\ \\x85 \xcd _\xc3\xccé
WCTUVIWOAT WV \ xe0\xdF\xb5\xB85 \xcC\x8b\ xecA\Xc @\ xb8MZC ; \xea \ x81\x06\ xelfo\x82t \ x@7A\xcb\ xe0\xb2@Tcr< \xa8\x
834\ x88 \xf2\xB81>PE\x1alu\xeaZFaF \xes \xeb \fcPh\xdc \ w14 xdFAaNx 01 oodf (XA x97EtM \ xal\x 06U xfe\xad \aof F i\ 9 2E\xc7
ArAR91 (Ui xc38 %11 B\xal\n\x94\xe5” LAx08utPt\x8aT \xfa\xda\x12 \xca\x18}A\n \ucfFFixc 3@\ x88\x83 \xfb'\x82 | \xbbM
WBT7 N xB5 BT A RBb I " \xBcE A x08 \x 3\ xba\ xB3 1\ x31D\xB8dB\x1 8B <\ xb@"\ 209 xdb \xFE85\xBBug\ " \xdBE \xbB8'\x92\xfBa9
W88\ x@6R\xOd\ xf7B*h#\ xe0C \xcf \xac+p: \x838D \x1bx \x184\x18%xa3 \x18 \xc 3\ x88 \xc 3\ x1c\ xeb \xdBF T xb8\xd5 \ xBEP\x
cel "\ x9e\xBb\xfacE<\xall\xb@\xdb\xdc\x@83\xch\xal\x82\xB7 \xaa_ #\xef\x83\x@6W\xB88\xaf \xb7 \xcb\x142$U\xBafD;
Kix@6srixc 2\ xe@t\xB1(\x83 \xe7F \xf8\xa3\xB89\ xad \xBcEI~"\x1lec" \x1a ™\ xfc\xcfD\xB6\x83 \x 14\ xda\ x 19\ x 14V \ x84\ x
884 xd5\ %951\ xchbU\x98]1 '\ x88% \xeb I\nF8\xac\xBc~ \x1F@NQ \xFc \xfa\xe7ET \xca \ x8F74\xc5\xB8\n&\x 98 \xccmi\xbe\xb
A\ f7\xe33\ k@6 \xc7I\x83 \ b (\xe2a\x@6 \xde\xf9 | \x27$ " \xfetMuw\xcEH+eHs | \x85 ! \x05\x14 ‘\xcb\xBc2\x98\xb4\x1d
tAx7fu(\x0e\xbe\x16'\n \x83\xd3 \xebd\xd3\x1f\xc8\xB8aB\ x84 \xa@ \x13R\x07 | \x83\xe8I\x87q\xcbrixad\xfe\xal\xfa
vBANx2B\x9e\x028\xc1\xeB\x1f \x0c\x81 \xel \xfd \xe@Z \xB3\xfB8\x83tb \xBe \n\nu” A \xc1\x14N\x81\ x84\ xal12\x@7 \x
13F) et \xb1h\xbd\x81 ‘\xc32\xc2\xB82\x84\xe0\xB8F \x0e \ xfe\xfb\xbb\xd1l\xfa\r; \xclrixbe\xbl\x95 xcs \ xd@\xa3H
AxdBTEAXO6 x2a \ x85\x00 \ 00\ xTF \x03@\xb6s \x@1~\xB8\xFbR\xBc \x04 (\xad \x1f{ \xe8 | \x8bc\x08\x19 \xba‘\x14P xeb
W xdFix8eE\xe@\xb3{v i\ xBF \xOblW@T \xa3kH \x18: Y19] \xfcdd\x16\ xcezM\xcaV oo (\xd3\xdel \ 14\ xFBH \ B85 x84\ x1
a04\x82GN\x18Mi\x1d# \xeB0 \x 18\ x99\ xB1 \x8 1 i\ xc1Llchxc 92\ x13\x%e> 94\ xe 1\ x836" \xb8+\xeb\x1a\x162L) \xdde\x
FFLAxdB* \xad \xd7 P\ fS\xdB8TT+\xc 5 \xB89G] \x 8\ kB \x 1BM\ xB34 3\ x %13\ xBeh0\x85; T\ x18 \x8e\ x84]\ xd9\x88ul
Wb3Ax86%x88 \xf 7\ xeb\n ! A B\ xbfn\ef 386 \FOwt B\ xf 2+ \xce\ x 16\ xb9\ x 14\ x81 '\ x89\ x 88\ x86P \ xd@* M\ xc 1<\ xBbu'\xa
514\x02|8\x82\x847 \xe86\xbc \xef \xdBB2\xC2TH2A X144\ xc 3 \x08< \xB81u \xc 7@\ x8a \xd 3\ xFc\xB1U\xc 5 \x14&\x16 L\ x1b
Flocfa\ 14N\ Fe\ kB4 FE\x 02 \xa7 &\ xeb (\x8b\xe5\xdBV \x 18\ x84 - \x8a \xT1\xcB\xa7MH\xeb5 \ xc 7 \x 17 xcB\xdb\x082\ xf3
@\x8dhxfoH \xba\x8b\xd 7 \xc12\xcc\xe8rixfb \xBet \xefd 2o in \x91{ $\x1b\xa3\xa3 P\ xeB\x83 \xc 2\ x18\xf3 (h8 \xe8#L
Wxefhxc@\ 1927\ xbc\ x93\ x83 \xaeL ;, \xO2\\\xBL<A\xbF \ x98 T \xF 7\ XB 3\ O\ r\ x82 B8\ x 94\ X B2 \x8f \ x B8\ xabA#T \xcC
7hxl1g<t \xefini\xd2E \x1b\x82\n\x83\xel \xdS 1 1 \xcl \x15\xeb\x@c\x8F \x92_\xSGe'\xea#X I@\x9bt \x08!\xal\x81\xe4D
Wt 148 xBOE AT\ kB3 h \xba\xed \xad \ 16\ x 11\ xBb\ xad \ x FAE \ x0T\ FBAN\ X FBT \xBb \ xc SvA xS\ X7\ xF 7\ xb T, {\oeef\thoef
Waf5ixc8\xa3 \xad\xd7Fpbj[\xfa\xa2 \xbF\ucf FAxceI7F \xfd; j \efF 1A\ 158] A7 14\ %01 _X(thxd3\xc3@\xad \x86'\x88
WA xba \xe1\x 00X\ kG2 \xceVix15\ k13 \xc B\ x88 \ xb1Vix0 \xco (\xde \xed \xec\xB1\\ A\ xBF\xB1H\xefD\xca\xba\xbB\xc
BUAXEE \xda \x83\xcBG \ 1\ xB18\ x84\ xc 7\ xBB \ B cE \ B8\ xad \uefb \ocbB e\ xlc@A \x9d™hxld [Ax0d\ \ocfbul \xec3 . US
Snixb7chxf1X \xbe\x81\x10\x04 \xafke 8\ xal \¥O5P \xc3 "\ eS8 L \xF7dt \xd 28\ xbF\x94 ; bMPCA\x A\ T\ F 4 \x80 | $I~F\xcO\x8
duldixfel\xBcocfd8i\xedl \xfad xde; (WVEn (W2 "\ @@\ xB18T1 \x0e \xf O\ xdoR of 5N OB\ F 1\ e FAxG3 TP\ 19M \ xdd \ x1e="xa9
W18\ xeFa\ 05 e @\ xcad \xBf (\xa2\xla ‘x18\xc8F \xad\xbf ol 83 . \od TAxcBB\ x9d \xB3*)8\ x0@ \x11\xal \xfb> \xaaX
Wrixa2 140019\ xbFixal \ 88" \x 92U \x06 \ x82\x92A \xbo \x06@ \ xad " 1 \x82 . \xaB\x18\ xB0\xB83COb\xTE\x8b +\x86K\x1
844 xb3} \x8c \xab\xab\ x84\ xe8\xf 3\ f 9\ x04r \ecd \x88 (\xxldx\xab (> \x18\xco* \x187 \xc B\ \xh \x17\xb2\x1a\x88\x19
WxdBAT \xec\xfB8\x81\x83 \xbb (\xe2\x86u’\x9eCCB! \xcB\x89\x83 \x1815@ \x92 \x19\xbb\xcc\ x93\ xb35\xad \x08P\x1fAJ
Wxbcd&h\xb3\xddI\x18. Uhx15\x87 \xdei \x88\xd5 \xelE\xd702\x15\xa6dz] \xd42Rt \xd4 \xeB\xcB8FX \xch) \xcd\x12 [\x18\x
c5h\x88'’

67| Page

https://exploitreversing.com

[+] Decompressed Data Length: 1833
[+#] Decompressed aPLib data saved as C:\Users\Administrador\Desktop\MAS\MAS_7\Saved_Files\filedata_2.bin

[*] Compressed aPLib data at: @x59B848

b*hxf5\x00'\xe0\xee \x1c \x8b\xec\x83\x87,, SVsu\x08 \xdOF8W\x08] \x87YQ\x89M\xfc\x8d ; N< \xbcP\xBBE \x@8\xFfV\x1
AN\ B33\xcd~N\oBc\xf 2\ xechxfajg \xBc\xfcl\xB8\ B8 oo\ x4 \xeff, \x18u3 \xed \ xdb '\ 26T\ xBbD\xdef\ xac\ x84\ x82 \ xBC
\x8dMixfegixes \xdc \xdfdefvixes \xf8\xad#t \xde} 2} \xdc\xB6\xed\x84\xfB\x08 \xfa\xe6 \xf4 \xff\x16Zphpi\xi8ixel
CIW*\n'\xF4In\x88ra; \xdfuix83\x98\xBe\xe2i% \x8b\xdd . \xfe\xe2 \\\x01P x93 2@ \x19%\ x84 | C\n\xfb\x82 | \x3f\x88"
\xce” \xeBy\xB2\x88 \x95\x8d \xd4\x83 ‘\xed\xBe\xc58 \x@3\xca;W\xB1 "z\xBc\xeavfd\x@e'\x18\x04 \xed\xBc\xlc_"
['Wx1chxc9hxc2\xede\xea’

[+] Decompressed Data Length: 245
[+] Decompressed aPLib data saved as C:\Wsers\Administrador\Desktop\MAS\MAS 7\Saved Files‘\filedata 3.bin

[*] Compressed aPLib data at: 8x59B988

h”hxge\xBi\xBB\xBd@kaSUSVNﬁT\xg?PH\x8d1$u\xd1\x1c\xBl\xec\xQS?XxBZHKC3\x3b\xd9\xBl\xBGIpA\be\xB?\xBB\P
WxBdSxLAx1e\xBOEwW: \x@fMo oot m(\xle\xecgI=\x83\xce<Lo " \x87Uo \xc 7\ x8b\xc1A\xbe @(\x89D%\xf1\x86BE3 \xf6. }H{t
E\xB1F\x83\x8b\xB7\x83e\xe7 \xc36\x08 \xeb3\nB \xf7 a7 ixlc \xef \x1b\xc 7T\ xeb\x04 | gxdP@\raT\x82hMg \xf7\xab
W7 FH#3\COY\ 96350 \xeT (\xba\xd6\x8c\xde\xea\rO\xFfa\x12\xal\xe2d \x 19 \x13NMC | \xefevixce \ofFixB3Q(Nyxao\xl
14%x38h Y1818\ x84 ' xe3 " Mixef \xfoxfe x5 \@elx 7T Q \xbB \xac\x87 |o\x85\xF6 ™ \xBfD\xd3I)\ xB89\xBb\xcdb1ls \xcf
W14\ @8 \xaa e\ kO 1\ X8 T \ 18\ x%e \ X8B3 \xcc \ xB T \xBEN \xFe \ x82 \ x84\ xdd\xB83 \xba) \xe2 ‘\xde\xeB8'\xdBQL\xed]\x
bfE\xb2E&\ 89\ 283 \xxd9C™ 7 \x@fy \ord 9 1< TR\ c A IbP A\ @7\ E@\ 298 (Q\\ A xcd \x@6 1 \\P \xdc (\xal\x85 T'\xd8]\xasgU
\xd2q1\x18\xB4Kh\xb2\x18\x12 ‘x@3M\x87b\x8eZ\x81\xc4Dr9A~\x1d_\x86[]\xc3\xep"

[+] Decompressed Data Length: 488
[+#] Decompressed aPLib data saved as C:\Users‘\Administrador‘\Desktop\MAS\MAS_7\Saved_Files\filedata_4.bin

[*] Decoded basetd data at: e@x59C66@

b"\xa3d\xa8\xa3\xad\xa3d\xad\xa3d\xal\xa3d\xad\xa3d\xa8\xald\xa8\xa3d\xaB\xaa\xaa\xaa\xaa\xaa\xaa‘\xaa\xaa\xac\x
aa\xb2h\xaa \x9\xO =0\ x0T\ xb5\xa3 \ ka3 \xad\xaa‘\xaa\xba\xaa\x96 \xaa \xa8\xaa \xc3\xc 3\ x06 \x96 \ xb7 \xae \xd6\x
bdi\xa3lxc5hxa3d\xa3\ o\ xc3\x9c\xaa\xaa\xac\ xaa kb \xe3 711\ TF i@ 1\ k7 F\xB1 2\ xB1\ %81\ x08\ x82 1 \ xB7YYYY
YAXTEYY ™ P TP Fyyyy Y Yy yyyY \ x9a\ k88 JYPPPPYYYYa \x94a\ x0eYY \x85Y \ %92\ ka3~ " ¥YYYYYYYYYY \x9f \x81\x83\x0l\xe
44083 ed 5 B3 oo Bl Wb\ x@3 oo B 18 \ 18\ 18\ x 18PPPP\ x 14 BB 1\ x81 B 1 e\ B2\ x 18\ xBB \ x 88 \ xB8 \ xa
A8 1 h\xe1\xc@ \xc2\x18\x11\x82\x83 \ x11\x83\xe3 \ x84\ x08"\ 08\ x14\x08\ x82\ x88 \ xB8 \xco \xcB\x82\xB2\x82\ x82 \x8
@\ x8a e f Focf Fiodf PP\ xBe \xee\ xe8 \xef f\xca\ xel\x8 1\ x81\ xB8 \x86\ xe8\ x84\ x8e \ xco\xc 2 \xB81\ x81\x83 \xa1 \xff \xf
81\ x88% 03 ecd A\ B\ 183\ B 1B 1 \ B 1 e FF A\ B3\ @3\ @3 \xc B\ B8 \n"\ B8\ x84\ x88\ xBB \ 88 \xB88\x 7\ x883\x8
14x88%x88\x88\x88\ x88 \xe8 \xf i\ xbf \udfFiocf i\ xe8 \x88 \ 88\ x88 \ x87 \ 08\ x88 \ x\x08\x088\x88\ xa8\x08 \x88\ x80 \xe
8\ x88%\x88\ x8a\xe8 \xee\x8e \ x T\ xf\xee\x8e\xed \xbf \x88 \ x88\x88\xee\xe \ xee \ x88 \xea \x7\ xea\xee \xffI1I1IKR]
J330L333333IIUE@IIIEYMFI]IIIIIIIIIIIIITacgNITkmIIEMIIDEI I\ 186\ x08\ xBB \xB82 \ r\xB6\ xB86 @6\ X856\ xBe \xB8 "\ 188

\xB8'\x88\x856\x06\ X856\ x08\ x86 \ X856\ 82 \ XxB6\ x88\n\n\X87 \xB7\ x05 \xB2 \x@5\xB5\x82 \ x82\ x88 \x80 \ x84 \ x84\ x84\ xed
W88\ 88 \x08\x0e\ x5\ X85\ X868 \ 180\ x81 \xB5 \ B8\ x88 \x98 \x88\ x18 \ xBe \ x18\x88 \x08(\x880\xea\x28\xe1\x32\xal

VBB h\xee \x e \xcFixfe? \xab\ x@a\ xbB\ @8 \ xb1\x88\xb3\ @8\ xba \xf8\xbb\xB8 \xc@\x88 \xc 1\ xB8 \ xc 7\ xbfbi\xff\@aix
BdhafFix@d \cd oo Fix@e \ e 5o FAxee uof Fiocf e b\ @1 e Fiix@e v 12\ k88 \ x88 \x 13\t \ xee \ x16 \xe8 \x88 \x1 7\t \xee+

WEhAx@8\xae \xf i\ k87 \xb2 \xfFxed \xba \ e F\xBe\xb5 \x T\ x88 \xc3\x81\xe8 \xc 7 xffixbf\xe7\x@8\x00 \xTe\x82\xee"

[Figure 86]: Output from the second version of the decryption and decoding script

The script presents relevant changes when compared to the previous version, but basically these new lines
of code continue our work from where we stopped by decoding Base64 data and, mainly, decompressing
blocks of aPLib compressed data.

68 | Page

https://exploitreversing.com

Therefore, necessary comments follow below:

| kept commented code from lines 66 to 68 just in case readers need to check the extracted key in
bytes and hexadecimal.

From line 74 to 86, | structured the script to take in account three scenarios, as already
commented: plain text information, decoded Base64 data, and decode Base64 data followed by
decompressed aPLib data.

On line 75, the script decodes the Base64 data that comes from the RC4 decryption.

On line 80, | kept commented print instruction to show the block of data after having executed the
aPLib decompression.

The compressed aPLib data has the following format: [uncompressed data size] [compressed
data]. It is not only valid in this malware sample, but other families using aPLib present the same
pattern.

On lines 78 and 79, | extracted the size and uncompressed data into two different variables,
data_len and data_corpus, respectively. The used aplib() function comes from malduck package.
On the main() routine, | separated addresses in three different lists (lines 10 to 15) according to
the respective scenario.

The script saves the decompressed aPLib data into different files on disk. To avoid issues, a quick
checking is performed before performing each write operation to the file system (lines 26 to 29).
As | already had mentioned previously, | will not analyze any of four dumped files, but if readers
have interest in doing it, there might be a shellcode there. ;)

As a confirmation of fact that the first four bytes of the compressed aPLib data are really the size of the
uncompressed aPLib data, the output of a file listing after extraction has finished follows below:

C:\Users\Administrador\Desktop\MAS\MAS_7\Saved_Files>dir
Volume in drive C is Windows
Volume Serial Number is DU5E-7379

Directory of C:\Users\Administrador\Desktop\MAS\MAS_7\Saved_Files

01/03/2023 09:U45 PM <DIR=>

01/03/2023 18:38 PM <DIR=

91/03/2023 @9:45 PM 1,549 |[filedata_1.bin

01/03/2823 @9:U45 PM 1,933 |[filedata_2.bin

01/03/20823 @9:U45 PM 245 |filedata_3.bin

@1/03/2023 @9:45 PM 400 |filedata_u.bin
U File(s) 4,127 bytes

[Figure 87]: List of saved uncompressed files

This output confirms exactly what has been presented as output by our script in Figure 86.

The last goal is to retrieve the C2 IP address list used by this sample. Initially, readers might consider it
would be a painful step, similar to other malware families that we already learned in this series, but you
will realize that this is not the case, fortunately.

A good step for finding a possible list of IP addresses is by starting analysis from functions related to
Internet and, as we saw when we managed API| hash resolution, there are good candidates. Using one of
these network related APIs, we can find the caller routine and, from there, getting close our objective.

69| Page

https://exploitreversing.com

The sub_584ACO0 routine is an interesting initial point:

O = O LA P L

o e e e e e
= o R S VI NP Y

18
19
28
21
22
23
24
25
26
27
28
29
38
31
32

A2

34

o |

36

=
-+

-

*_ fastcall sub_584ACB(int *al, char
' [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+"
17 = al;
var_BFFFFFFFF_1 = var_@OFFFFFFFF;

v6 = ab_Token Manipulation(®, wvar BFFFFFFFF);

ab_GetEnvironmentStringsW(v12, a2, *(vb
sub_58F584(v18, 8);

sub_58F584(v17, 8);

v7 = ab_handling data 3() + 1;

ab_NtDelayExecution(8x3E8u, var OFFFFFEF B

VB = @;
if (var BFFFFFFFF 1 == @xFFFFFFFF)
goto LABEL 18;
while (1)
1
ab_InternetOpenW(vld, @, 1, 8);
v14[7] = 1;
vle = 8x12C;
v9 = sub_58EC3C(v7, var BFFFFFFFF_1);
if (ab_Internet_1(v14, v3))
{
ab_Internet 2(v14, v28, v19);
sub_58F434(v18, v28);
ab_ww_RtlFreeHeap 1();

if (lvi4[e] && (v15 == @xC8 || w15
{
if (1a3)
break;

ab w rcd(v2l, v18, ad);

sub_58F434(v17, v21);

ab_ww RtlFreeHeap 1();

if (!sub_58F4DB(v17))
break;

+ 8xB));

—= 8x194))

*a2, char a3, char a4)

TO EXPAND]

[Figure 88]: sub_584ACO0 routine: partial listing

As shown above, | already had renamed few routines while | managed APl hash resolving issues (check
Figure 40), so it is clear that this sub_584ACO0 routine is invoking routines related to Internet such as

ab_InternetOpenW, ab_Internet_W, ab_Internet_1 and ab_Internet_2.

On line 11 I initially renamed the sub_585708 to ab_handling_data_3 because | didn’t want spend time
analyzing it at that moment, but now it gets my attention due the fact that sub_584ACO0 routine invokes
other routines that are associated to the Internet communication, and we know that these routines will
need IP addresses, which will need to be retrieved from somewhere.

Moving inside the ab_handling_data_3 routine, we have the following:

70| Page

https://exploitreversing.com

1 DWORD *ab_handling data 3()
2 {
3 /7 [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]
]
5 result = unk 590264,
6 if ('unk_59D264)
71
8 eEJlt = ab w RtlAllocateHeap();
9 f (result)
10 {
11 vl = 8;
12 result[1] = @;
13 result[2] = @;
14 result[3] = 8;
15 }
16 else
17 {
18 result = 8;
19 vl = 8;
20 }
21 unk 590264 = result;
22 *result = *(&byte 590028 + 2);
23 if (*(&byte_59D820 + @xB))
24 {
25 do
26 {
27 VS = 8;
23 v2 = &ab_encoded data 3 + 6 * vl;
29 vi = *v2;
30 vl = *(y 2+ 2);
31 sub_59871C(&v2, v6);
32 sub_58E644((unk_59D264 + 4), v6[8], *(unk_59D264 + 4));
33 ab_ww RtlFreeHeap @(v6);
34 ++vl;
35 }
36 while (v1 < *(&byte 5908208 + BxB));
37 return unk_590264;
38 }
39 1}
48 return result;
41 }

[Figure 89]: sub_585708 routine
Apparently there isn’t anything really useful here, but there are clues:

= Online 28, there is an arithmetic operation involving an address (named ab_encoded_data_3).
= At the same line 28, there is a different multiplication operation: 6 * v1

= On line 36, another arithmetic operation is explicit: [address + offset].

= References as: [ptr_var + 4]

= The same address reference being used twice: &byte_59D020 + 2 and &byte_59D020 + OxB.

71| Page

https://exploitreversing.com

The content of ab_encoded_data_3 follows:

.data: 00590888 ; Segment type: Pure data

.data: 88590808 ; Segment permissions: Read/Write

.data: 808590888 _data segment para public ‘DATA’
.data: 88590088 assume cs: _data

.data: 88590008 ;org 59D88eh
.data:808590000 var_BFFFFFFFF dd @FFFFFFFFh ;
.data: 88590088 R
.data: 80590884 align 28h

[data:00859D820 byte 590820 | db 2Bh ;
.data:088590821 db 22h ;

.data: 08590822 db @D1h

.data: 88590823 db 78h ; p

L data:008590824 word_59D824| dw 56BEh ;
.data:B8590826 byte 590026 db 49h ;
.data:B8590827 byte 590827 db @ ;
.data: 808590828 byte 59D028 db @ ;
.data: 88590028 R
.data:008590029 byte 590829 db @B2Zh ;
.data: 885900829 R
.data: 08590824 byte 59DB2A db 1 R
.data: 88590824 ;
.data:0059D826 unk 59D82B | db 4 ;
.data:8859082C ab encoded data 3 |db 78h R
.data: 00590820 db 32h ; 2
.data:0859D82E db 28h ; (
.data:0859D82F db @B9h

.data: 08590838 dw 1BBh

.data: 00590832 db 8Bh

.data: 08590833 db 3Bh ; ;
.data:BB8590834 db @Eh

.data: 08590835 db @DFh

.data: 00590836 db BECh

.data: 08590837 db 1Fh

.data: 08590838 db 79h ; vy

.data: 08590839 db 28h ; |
.data:BB590834 db &8h ; h

.data: 08590836 db @01h

.data:8859083C db @CAh

.data: 08590830 db 19h

.data:0059083E db 8Bh

.data:0859D83F db 8AZh

.data: 08590848 db 71h ; g

.data: 08590841 db @A%

.data: 00590842 db 51h

.data: 08590843 db 2

use32

DATA XREF:
sub_584AC8+

DATA XREF:

DATA XREF:
DATA XREF:
DATA XREF:
DATA XREF:
D11Register
DATA XREF:
ab_ OutputDe
DATA XREF:
ab_OutputDe
DATA XREF:
DATA XREF:

[Figure 90]: first bytes from .data section

Observing the code in Figure 89 and matching data being referenced on Figure 90, many points become
clear and, eventually, they help us to conduct short renaming task on variables from sub_585708.

72| Page

https://exploitreversing.com

Readers should realize that:

The sub_585708 routine containing few renamed variables (and incomplete yet) follows below:

[« IR I o TR o B R W Iy N Ty

V)

1@
11
12
13
14
15
16
17
18
14
28
21
22
23
24
25
26
27
28
29
38
31
32
34
35
36
37
38
38
48
41

the address 0x0059D020 (byte_59D020) is used as reference on the code.

one line 23, *(&byte_59D020 + 0xB) take us to the content stored at 0x0059D02B, which seems to
be the number of IP addresses (0x4) being contacted by the malware. This conclusion is also
enforced by the condition used by while instruction on line 36 (v1 < *(byte_59D020 + 0xB)) .

The address 0x59D024 stores the botnet id (22206).

one line 28, &ab _encode_data_3 + 6 * v1 is clearly passing through each IP:port combination.
As there are four IP:port combinations in a supposed C2 list, and each one takes 6 bytes, so from
0x0059D02C address (ab_encode_data_3) the next 24 bytes represent all four combinations.

_DWORD *ab_handling_data_3()

{ .

}

/ [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]

result = unk_590264;
if (lunk_59D264)

{

result = ab_w RtlAllocateHeap();

if (result)

{
counter = @;
esult[1] = @;
esult[2] = @;
result[3] = 8;

¥

else

{
result = 8;
counter = @;

¥

unk_59D264 = result;
*result = *(&initial data offset + 2);
if (*(&initial data_offset + 8xB))

{

_ip = &ip_list_offset + 6 * counter;
ip_address = *next_ip;
port = *({next_ip + 2);
sub 59871C(8&ip_address, v&);
sub_58E644((unk_59D264 + 4), v6[@], *(unk_59D264 + 4));
ab_ww_RtlFreeHeap B(v6);

while { counter < *(&initial data offset + @xB));
return unk_59D264;
¥
¥

return result;

[Figure 91]: sub_585708 routine with few comments

73| Page

https://exploitreversing.com

Based on conclusions so far, | wrote a Python script to extract the botnet and IP:port combinations:

1 import binascii
2 import pefile
2 dimport struct
4 import os
5 import ipaddress
)
7 # This routine extracts and returns data from .dgta section,
8 # .data section address and file image base.
o def extract data(filename):
18 pe=petile.FPE(filename)
11 for section in pe.sections:
12 if '.data' in section.Name.decode({encoding="utf-8").rstrip('x88"'):
13 return (section.get data(section.VirtualAddress, %\
14 section.S5ize0fRawData))
15
16 # Extract bytes from .data section, and format IP addresses and ports.
17 def extract C2():
13
19 # Next two Lines extracts .daota section’'s information.
28 filename = r"C:\Users\Administrador\Desktop\MAS\MAS 7\mas_7 unpacked.bin”
21 data_encoded extracted = extract _data(filename)
22
23 # Initialize important offsets used to extract bytes associated with
24 # IP addresses and ports.
25 initial data offset = 8x28
26 botnet offset = initial data offset + 4
27 ip size offset = é@x2b
28 ip list offset = ip size offset + 1
29
38 # Extract the number of IP addresses/poris and calculate the total size.
31 num_ips = ord(data encoded extracted[ip size offset:(ip size offset}+1])
32 ip list bytes = 6 * num_ips
33
34 # This line extracts the encoded IP:port data bytes.
35 ip bytes = data encoded extracted[ip list offset:ip list offset \
36 + ip list bytes]
37
38 # This Line extracts the botnet
39 extracted botnet = struct.unpack(’'<h', data encoded extracted %
48 [botnet_offset:botnet_offset+2])[@]
41 print("\n[*] BOTNET: %s" % extracted botnet)
42
43 # Extract IP addresses and respective ports, and format them.
44 print("\n[+] C2 IP ADDRESS LIST:")
45 print{24 * '-' + "\n")
46
47 k =8
43 i=28

74| Page

https://exploitreversing.com

while (k < len{ip bytes)):
ip_item = ip_bytes [k:k+4]
ip port = ip bytes [k+d:k+6][::-1]
print{"IP[%d]: %s" % (1i,ipaddress.IPvdAddress{ip item))},end=":")
print{int{binascii.hexlify(ip port),16))

an]

LJ R

1% o ¥ o B ¥ o ¥ o Y A "R ¥ g | =Y

4 k=k+ 68
5 i=1+1
def main():

extract C2()

s LU R =

[0 T
=
_h
=
k)
3
m
I
1]
=
m
(=l
|:l

[#] BOTNET: 22286

[+] C2 IP ADDRESS LIST:

IP[8]: 128.58.48.185:443

IP[1]: 135.59.14.223:8172
IP[2]: 121.48.184.289:5682
IP[3]: 139.162.113.169:583

[Figure 92]: script to extract botnet, and C2 IP addresses

Comparing this output above against Triage’s output (Figure 2) we have a perfect match!

8. Conclusion

This article presented new challenges when compared to previous articles of this series, but hopefully
readers have learned and enjoyed the reading. Recently a professional (Twitter: @bushuo12) translated
the three first articles of this series to Chinese language if you are interested in reading them:

= (MAS): Article 1 -- https://www.yuque.com/docs/share/619f03dc-1bc9-42f7-828e-fc17d82786e7
= (MAS) : Article 2 -- https://www.yuque.com/docs/share/d16efbd6-e2e6-4325-9b9e-23¢613bd2280
= (MAS): Article 3 -- https://www.yugue.com/docs/share/7dca2583-8456-4ca5-8862-0524fc6faaf9

Just in case you want to stay connected:

= Twitter: @ale_sp_brazil
= Blog: https://exploitreversing.com

Keep reversing and | see you at next time!

Alexandre Borges

75| Page

https://www.yuque.com/docs/share/619f03dc-1bc9-42f7-828e-fc17d82786e7
https://www.yuque.com/docs/share/d16efbd6-e2e6-4325-9b9e-23c613bd2280
https://www.yuque.com/docs/share/7dca2583-8456-4ca5-8862-0524fc6faaf9
https://exploitreversing.com/

