
https://exploitreversing.com

1 | P a g e

Malware Analysis Series (MAS):
Article 7

 by Alexandre Borges
 release date: JANUARY/05/2023 | rev: A.1

0. Quote

“The two most important days in your life are the day you are born and the day you find out why.”

(Mark Twain, Ernest T. Campbell, and others, and also mentioned in “The Equalizer” movie -- 2014)

1. Introduction

Welcome to the the seventh article of Malware Analysis Series, where we continue reviewing concepts,

techniques and practical steps used for analyzing malicious PE binaries.

If readers haven’t read previous articles yet, all of them are available on the following links:

▪ MAS_1: https://exploitreversing.com/2021/12/03/malware-analysis-series-mas-article-1/

▪ MAS_2: https://exploitreversing.com/2022/02/03/malware-analysis-series-mas-article-2/

▪ MAS_3: https://exploitreversing.com/2022/05/05/malware-analysis-series-mas-article-3/

▪ MAS_4: https://exploitreversing.com/2022/05/12/malware-analysis-series-mas-article-4/

▪ MAS_5: https://exploitreversing.com/2022/09/14/malware-analysis-series-mas-article-5/

▪ MAS_6: https://exploitreversing.com/2022/11/24/malware-analysis-series-mas-article-6/

This time we will be analyzing Dridex, which a complex banking trojan and that has been updated many

times in the last few years. Similar to other malware threats, Dridex steals credential information

(keylogger behavior) and send it to adversaries using an encrypted set of C2 servers, as usual and seen in

other families. On most occasions, it’s delivered by a malicious document as an attached file, but it is not

the only used vector. In terms of history, Dridex came up in 2014, and it is composed by a loader, which is

responsible for installing the payload and downloading additional modules such as VNC and SOCKS

support, and the payloader that’s able to download additional modules too.

Excellent malware analysts already analyzed it, produced good reports, and our goal here is only show few

hard aspects of this binary. As usual, there isn’t the purpose of dissecting any malware in this series of

articles, but only to present few points of view that enable readers to proceed with their own analysis.

To keep what we have done so far, all malware samples being analyzed are available from the well-known

sandbox services such as Triage, Malware Bazaar, Virus Total, Malshare, Polyswarm, Any.Run and other

ones.

If you want, you might use Malwoverview tool (https://github.com/alexandreborges/malwoverview) to

download and, get first information and analysis about downloaded sample from most of these services.

https://exploitreversing.com/2021/12/03/malware-analysis-series-mas-article-1/
https://exploitreversing.com/2022/02/03/malware-analysis-series-mas-article-2/
https://exploitreversing.com/2022/05/05/malware-analysis-series-mas-article-3/
https://exploitreversing.com/2022/05/12/malware-analysis-series-mas-article-4/
https://exploitreversing.com/2022/09/14/malware-analysis-series-mas-article-5/
https://exploitreversing.com/2022/11/24/malware-analysis-series-mas-article-6/
https://github.com/alexandreborges/malwoverview

https://exploitreversing.com

2 | P a g e

2. Acknowledgments

We are in a new year, and it is hard to believe that I started writing this series of articles at end of 2021,

about a remarkably simple malware (Hancitor). Reading it again, I realized I included a list of concepts and

foundations about code injection, hints about unpacking, and after having done a short analysis, I

explained step-by-step how to write a C2 extractor for that family. Being honest, I didn’t have any plans for

writing a second article about malware analysis, but an unexpected reaction happened in favor of the

article and a substantial number of professionals asked to write a second article. Checking my records,

more than ten thousand people downloaded the article in less than one month, what also was surprising.

I have been around working with information security, either as primary or secondary work, for so much

time. I guess my first serious contact with information security was in 1997! At that time, I read the famous

“Smashing The Stack For Fun And Profit” (released in 1996 on Phrack by Aleph One) and I clearly remember

that it took me 45 days to really understand the article. It was a different age, and we didn’t have the

Google yet. At that time, I knew I had found my passion, but you know…passions are difficult to be

followed. Three years later, I worked as security analyst, and my primary role was executing penetration

test against company who had contracted the service. Hey… it was the year 2000 and this kind of job was

really unknown. Since this time, my passion for reversing engineering and vulnerability research/exploit

development has made part of my daily life, even when I worked for big companies doing a different job.

I initiated my reverse engineering career almost two decades ago (even as a secondary job and,

sometimes, hobby), but similar to other colleagues, I also read the famous series about exploitation from

Peter Van Eeckhoutte (a.k.a. @corelanc0de3r) since 2009 (thank you for such excellent articles and

friendship, Peter), and also articles from other researchers and, of course, my passion was there, equalized

over a subtle balance with reverse engineering. After few years, I was focusing and planning to follow my

career in vulnerability research, but life had other plans and I returned working full time with reverse

engineering (out of big-techs), and for a long sequence of years. Of course, an extensive and excellent list

of events happened since 2015, I spoke in many big conferences around the world, met amazing people

over the years, learned a lot of stuff, and I am grateful for everything and every single moment.

In the last quarter of 2022, and after many, long years, I definitely returned (migrated) to vulnerability

research because, as I said, it has been my passion since ever, and now I finally can focus a hundred

percent of my energy on learning and doing something I really love to do, although I use reverse

engineering and programming for everything, which have been incredibly useful and, of course, I also like it

so much. Probably one of great experiences so far is that I have chance to remember myself that every

single day I know less.

As I have mentioned, reverse engineering and malware analysis make part of my life, and I plan to keep

speaking about it at conferences (if I have the opportunity to, of course) and writing this series of articles

and other new ones , to help professionals because I have realized as much useful these articles have been

for many people and, in some cases, this series (MAS) has helped them as an initial reference for working

in reverse engineering area.

Of course, there wouldn’t be this series without receiving the decisive help from Ilfak Guilfanov (@ilfak),

from Hex-Rays SA (@HexRaysSA) because I didn’t have an own IDA Pro license, and he kindly provided

everything I needed to write this series about malware analysis and other one that are coming. However,

his help didn’t stop in 2021, and he and Hex-Rays have continuously helped until the present moment by

https://exploitreversing.com

3 | P a g e

providing immediate support for everything I need to keep these public projects. Additionally, Ilfak is

always truly kind replying to me in every single time that I sent a message to him.

This section, about acknowledgments, can be translated to one word: gratitude. Personally, all messages

from Ilfak and Hex-Rays expressing their trust and praises on this series of articles until now are one of

most motivation to keep writing as well readers who send me even a single message thanking me.

Once again: thank you for everything, Ilfak.

I have chosen a quote to start each article to subtly show my thinking about the life and information

security in general, sometimes mirroring the present days and all the challenges that have forced to reflect

on everything. At the end of day, we should invest in the work that we really love doing, don’t matter our

age, because the life is short, and the ahead day is our future.

Finally, I leave the same message that Steven Seely (@steventseeley) sent me when I mentioned I was

finally restarting my career in vulnerability research: “enjoy the journey”.

3. Environment Setup

This article has a lab setup using the following environment:

▪ Windows 11 running on a virtual machine. You’re able to download a virtual machine for

VMware, Hyper-V, VirtualBox or Parallels from Microsoft on: https://developer.microsoft.com/en-

us/windows/downloads/virtual-machines/. If you already have a valid license for Windows 11, so

you can download the ISO file from: https://www.microsoft.com/software-download/windows11

▪ IDA Pro or IDA Home version (@HexRaysSA): https://hex-rays.com/ida-pro/ . At time of drafting

this article, IDA Pro 8.2 has been released, and readers should read about the new features:

https://hex-rays.com/blog/ida-8-2-released/ . Of course, readers might use other reverse

engineering tool, but I’ll be using IDA Pro and its decompiler in this article.

▪ System Informer (Process Hacker):

▪ Install Visual Studio 2022, including MSVC v143 Spectre-mitigated libs (latest).

▪ git clone https://github.com/winsiderss/systeminformer.git

▪ cd systeminformer\build

▪ .\build_release.cmd

▪ Go to systeminformer\build\output

▪ Execute processhacker-build-setup.exe

▪ x64dbg(@x64dbg): https://x64dbg.com/

▪ PEBear (@hasherezade): https://github.com/hasherezade/pe-bear-releases

▪ DiE (from @horsicq): https://github.com/horsicq/DIE-engine/releases

▪ HxD editor: https://mh-nexus.de/en/hxd/

▪ Malwoverview: https://github.com/alexandreborges/malwoverview

▪ Capa: pip install -U flare-capa | https://github.com/mandiant/capa/releases

https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/
https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/
https://www.microsoft.com/software-download/windows11
https://hex-rays.com/ida-pro/
https://hex-rays.com/blog/ida-8-2-released/
https://x64dbg.com/
https://github.com/hasherezade/pe-bear-releases
https://github.com/horsicq/DIE-engine/releases
https://mh-nexus.de/en/hxd/
https://github.com/alexandreborges/malwoverview
https://github.com/mandiant/capa/releases

https://exploitreversing.com

4 | P a g e

To get further information about lab configuration, I recommend readers to reserve time to read the first

and second articles of this series. Both articles present concepts about unpacking topic and other details

that, eventually, could be useful.

4. References

Readers are able to find articles, news, references, and reports analyzing Dridex and, although I haven’t

had the opportunity to read them, I recommend readers to do it because they were written by excellent

security researchers and companies, who covered and analyzed several aspects of the same family, and

readers can learn what’s more appropriate for their work. The list below doesn’t have any preferred order:

▪ https://malpedia.caad.fkie.fraunhofer.de/details/win.dridex

▪ https://us-cert.cisa.gov/ncas/alerts/aa19-339a

▪ https://unit42.paloaltonetworks.com/excel-add-ins-dridex-infection-chain/

▪ https://blogs.vmware.com/security/2021/03/analysis-of-a-new-dridex-campaign.html

▪ https://www.cert.ssi.gouv.fr/uploads/CERTFR-2020-CTI-008.pdf

▪ https://redcanary.com/threat-detection-report/threats/dridex/

5. Recommended Blogs and Websites

There are excellent cyber security researchers keeping blogs and writing really good articles related to

reverse engineering, malware analysis, windows internals, and digital forensics, so readers could be

interested in reading and following their contents. I tried googling to make a quick and sorted list in

alphabetical order as follow below:

▪ https://hasherezade.github.io/articles.html (by Aleksandra Doniec: @hasherezade)

▪ https://malwareunicorn.org/#/workshops (by Amanda Rousseau: @malwareunicorn)

▪ https://captmeelo.com/ (by Capt. Meelo: @CaptMeelo)

▪ https://csandker.io/ (by Carsten Sandker: @0xcsandker)

▪ https://chuongdong.com/ (by Chuong Dong: @cPeterr)

▪ https://elis531989.medium.com/ (by Eli Salem: @elisalem9)

▪ http://0xeb.net/ (by Elias Bachaalany: @0xeb)

▪ https://www.hexacorn.com/index.html (@Hexacorn)

▪ https://hex-rays.com/blog/ (by Hex-Rays: @HexRaysSA)

▪ https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering (by Jiří Vinopal:

@vinopaljiri)

▪ https://kienmanowar.wordpress.com/ (by Kien Tran Trung: @kienbigmummy)

▪ https://www.inversecos.com/ (by Lina Lau: @inversecos)

▪ https://maldroid.github.io/ (Łukasz Siewierski: @maldr0id)

▪ https://azeria-labs.com/writing-arm-assembly-part-1/ (by Maria Markstedter: @Fox0x01)

▪ https://github.com/mnrkbys (by Minoru Kobayashi: @unkn0wnbit)

▪ https://voidsec.com/member/voidsec/ (by Paolo Stagno: @Void_Sec)

▪ https://windows-internals.com/author/yarden/ (by Yarden Shafir @yarden_shafir)

https://malpedia.caad.fkie.fraunhofer.de/details/win.dridex
https://us-cert.cisa.gov/ncas/alerts/aa19-339a
https://unit42.paloaltonetworks.com/excel-add-ins-dridex-infection-chain/
https://blogs.vmware.com/security/2021/03/analysis-of-a-new-dridex-campaign.html
https://www.cert.ssi.gouv.fr/uploads/CERTFR-2020-CTI-008.pdf
https://redcanary.com/threat-detection-report/threats/dridex/
https://hasherezade.github.io/articles.html
https://malwareunicorn.org/#/workshops
https://captmeelo.com/
https://csandker.io/
https://chuongdong.com/
https://elis531989.medium.com/
http://0xeb.net/
https://www.hexacorn.com/index.html
https://hex-rays.com/blog/
https://github.com/Dump-GUY/Malware-analysis-and-Reverse-engineering
https://kienmanowar.wordpress.com/
https://www.inversecos.com/
https://maldroid.github.io/
https://azeria-labs.com/writing-arm-assembly-part-1/
https://github.com/mnrkbys
https://voidsec.com/member/voidsec/
https://windows-internals.com/author/yarden/

https://exploitreversing.com

5 | P a g e

Certainly, there’re other excellent blogs containing good series of articles on reverse engineering and

malware analysis., so I’ll include these references as soon as I learn about them in next articles.

6. Gathering Information

We are going to be working on following Dridex sample (SHA 256):

87e2dad373f75f5c0a200821523aebe45f6f4103b51fb0155ed2bf060ec50b04.dll

Readers can gather first information about the sample from Malware Bazaar:

[Figure 1]: Checking sample information on Malware Bazaar

Additionally, this sample can be easily downloaded by running the following command:

▪ malwoverview.py -b 5 -B

87e2dad373f75f5c0a200821523aebe45f6f4103b51fb0155ed2bf060ec50b04 -o 0

Remember that the download is protected with a password: infected. Thus, you’ll need to unpack it by

running: 7z e 87e2dad373f75f5c0a200821523aebe45f6f4103b51fb0155ed2bf060ec50b04 -pinfected.

From Triage (you should first get the job ID with: malwoverview.py -x 1 -X <hash> -o 0), we have:

https://exploitreversing.com

6 | P a g e

[Figure 2]: Triage information about the sample

https://exploitreversing.com

7 | P a g e

We already have enough information about the sample:

▪ This sample is really the Dridex loader.

▪ Possibly enumerates processes and changes privileges.

▪ It could be using WriteProcessMemory() for injection.

▪ The associated botnet is 22206.

▪ It communicates with a series of C2 servers (to be checked later).

▪ Two keys are presented.

Checking its imported functions (there isn’t any exported function even being a DLL) using PE Bear:

[Figure 3]: Triage information about the sample

This sample, like other Dridex samples, has anti-debugging tricks to delay the malware analysis. Here you

have a list of options to unpack the sample:

▪ Using x64dbg with ScyllaHide plugin (used against anti-debugging techniques) and setting well-

known breakpoints (check the first and second articles from this series).

▪ Using OllyDbg with StrongOD or Phantom plugins (they are used against anti-debugging

techniques) and setting up well-known breakpoints (check first and second articles from this series).

▪ Using hollows_hunter: https://github.com/hasherezade/hollows_hunter

▪ Using pe-sieve: https://github.com/hasherezade/pe-sieve

▪ Using UnpacMe service from OALabs: https://www.unpac.me/

To use hollows_hunter tool, one of the suggested syntax is: hollows_hunter64.exe /pname rundll32.exe

/loop

Regardless of the process you chose to perform the unpacking process, likely you will get two binaries:

▪ SHA 256: 45feffe2ffb4ccc9be7a9f83dff63872fd2cf0f2e73294437e129049c311e6e7 (DLL)

▪ SHA 256: d5d8e409720272563108e7a665d8d7d2fa4c773efdd260b85d3424e35618b963 (DLL)

The first one is really small (about 9 KB), but the second one has about 132 KB and it will be our target.

https://github.com/hasherezade/hollows_hunter
https://github.com/hasherezade/pe-sieve
https://www.unpac.me/

https://exploitreversing.com

8 | P a g e

[Figure 4]: PE Bear: imported functions

[Figure 5] PE Bear: exported functions

Interestingly, this DLL’s name (mshtmled.dll) has been also viewed in other Dridex samples and, in a

general way, there’re few changes among them.

Further and valuable information can also be collected by using capa.exe (its standalone version) as shown

below (the sample was renamed to mas_7_unpacked.bin):

https://exploitreversing.com

9 | P a g e

[Figure 6]: Malware profiling using Capa

From the output above, quite important items are:

▪ Detects virtual machine

▪ Uses RC4 algorithm

▪ Tries to disable security tools

▪ Information can be obfuscated

▪ Gets process heap force flags

▪ Parses PE header

We have enough information to proceed to the reversing engineering stage using IDA Pro, when we will try

to understand few points of this malware sample.

https://exploitreversing.com

10 | P a g e

7. Reversing

Dridex is a strange malware that demands our attention since beginning to understand what’s really

happening. As the unpacked sample is a DLL, so there are one or more exported functions and, of course,

our first step is trying to understand which one we should or not to follow. Listing the possible entry points

(CTRL+E), we learn that, in this case, there are five exported functions (potential entry points):

[Figure 7]: Exported functions and possible entry points

We must walk slowly here because the malware’s author might be misleading us and, eventually, one or

more than these functions might be fake exported functions. Additionally, names might not be what we

are expecting, so we have to check up all functions and trying to find how to begin the analysis.

My first suggestion for readers is for configuring the decompiler to show values in hexadecimal instead of

decimal to accelerate analysis. This task can be done by going to Edit | Plugins | Hex-Rays Decompiler |

Options and make the change “Default radix” to 16, as shown below:

[Figure 8]: Hex-Rays Decompiler

https://exploitreversing.com

11 | P a g e

Next step, as usual, we must perform the entire decompilation of the binary to force the IDA Pro to show

us the best representation of the pseudo code. To do it: File | Produce File | Create C File... Pay attention

to this detail here: eventually, we have to do it again later.

Opening the sample, we can see a bunch of routines’ calls and, as expected, it attracts our attention:

[Figure 9]: sub_581000 routine

Unfortunately, things get complicated quickly. For example, go into sub_58C9C0 → sub_592518 and you

will find something like:

[Figure 10]: sub_592518 routine

https://exploitreversing.com

12 | P a g e

There’re interesting points here:

▪ sub_59306C(0x8E844D1E, 0x333A3BAF, a2, 0x8E844D1E, 0x8E844D1E);

▪ two calls to __debugbreak();

▪ a strange return in the middle of the code, besides the second one at the final.

Before continuing, it is recommended to load additional Type Libraries (SHIFT+F11) as we have done in

previous articles: ntapi_win7 (likely, mssdk_win7 is already loaded). At the same way, I suggest you

loading additional signatures (SHIFT+F5): vc32ucrt, vc32rtf, vc32mfc, vc432_14 and pe. Please, readers

should realize that, as this sample seems to be obfuscated and the control flow is also messed up, so

probably these new signatures will not get effective. However, it does not matter because in most cases all

these new signatures and libraries will help us, so it’s interesting to get used to loading them.

The assembly code of the pseudo code shown in Figure 10 follows below:

[Figure 11]: sub_592518 Assembly code

https://exploitreversing.com

13 | P a g e

As mentioned in the previous page, the first point to comment is about the following subroutine call:

▪ sub_59306C(0x8E844D1E, 0x333A3BAF, a2, 0x8E844D1E, 0x8E844D1E);

Initially, and based on previous articles (remember Quakbot and Emotet in second and third articles of this

series), we can make few guesses:

▪ sub_59306C() is a function that is responsible for the hashing resolving task.

▪ An educated guess is that one of these hashes is a DLL hash and the other one is an API hash.

▪ There could be or not a XOR key involved with the hashing procedure.

If sub_59306C() is a hash resolving function, so it will be called many times and the fastest way to learn

about it is list all cross-references (X hotkey) as shown below:

[Figure 12]: sub_59306C being called 59 times

https://exploitreversing.com

14 | P a g e

We seem to be in the right way, but we need to examine the function because this routine could be a

wrapper. Additionally, there could be additional hash resolving functions.

Anyway, we can rename it temporarily to ab_maybe_hash_resolving and, after we have confirmed its

working, so we rename it again. Going inside it, we find sub_59306C that shows us the following:

[Figure 13]: sub_59306C routine

Moving into the sub_590304 routine, we have the following scenario:

[Figure 14]: sub_590304 routine

https://exploitreversing.com

15 | P a g e

Taking line 9 (Figure 13) and lines 10, 19, 24, 29 (Figure 14) comparisons with hexadecimals remind me the

context of Emotet, where we have control-flow flattening (check for the third article of this series), so

readers might assume that, apparently, there’s a potential obfuscation applied to the code.

This time is not so critical to be so precise and, for now, we can say that this sample is using obfuscation

and, in special, a form of control-flow flattening. Anyway, it isn’t what we are looking for. Examining

sub_591D34, which accept two equal arguments, we have as 30 first lines the following content:

[Figure 15]: sub_591D34 routine

Obviously, this sub_591D34 routine is parsing the _PEB structure and PE structures and, when these

operations happen in a context as this one that we are analyzing (within of a call like

ab_maybe_hashing_resolving(0x8E844D1E, 0xF9D6C1FF, a2, 0x8E844D1E, 0x8E844D1E)), so we can

assume that DLL and/or API hashing resolutions are involved, as we suspected previously. If readers want

to improve the presented code, so it’s necessary to add the following standard structures:

▪ _PEB

▪ _PEB_LDR_DATA

▪ _LDR_DATA_TABLE_ENTRY

▪ _IMAGE_DOS_HEADER

https://exploitreversing.com

16 | P a g e

▪ _IMAGE_NT_HEADERS

▪ _IMAGE_OPTIONAL_HEADER

▪ _IMAGE_SECTION_HEADER

▪ _IMAGE_DATA_DIRECTORY

We should not be concerned if we are going to use or not all these added structures, but if we need them,

so they will be already available. Examining sub_591D34 routine, which it’s exceptionally long, certainly we

will find interesting pieces of codes. For example, take a look at the while loop on line 175:

[Figure 16]: sub_591D34 routine: a small piece of code

The malware’s author is concerned to normalize case of the DLL name to lowercase as readers can verify

on lines 185 and 186. Additionally, there is a remarkably interesting point which we are talking about in

next pages: there is an XOR operation on line 195 and, according to past experience, we already know that

this value (0xE462D21C) will be particularly important during the process of hash resolving. Finally, in this

code, I only altered the types of Flink and Blink to LDR_DATA_TABLE_ENTRY * by using “Y hotkey”, and

this minor change brough us a bit more of context.

Returning to sub_5906C (Figure 13), let’s examine the sub_59143C routine (line 12). From this point

onward and assuming you know about the PE structure, a minimal work of changing variable types (Y

hotkey), renaming variables (N hotkey) by using these mentioned types and adding the MACRO_IMAGE

enumeration, we have the following result:

https://exploitreversing.com

17 | P a g e

[Figure 17]: a first piece code code from sub_59143C after a minimal work

This function is huge (more than three hundred lines of pseudo code) and even without analyzing the

entire routine, we can understand that the call for sub_59306C(0x8E844D1E, 0x333A3BAF, a2,

0x8E844D1E, 0x8E844D1E) is performing PE parsing to perform a possible API hashing task. There’re other

points to be checked, but that’s enough for now.

At the same function (sub_59143C), there is a small trick: on line 222 we seen the same XOR operation we

mentioned previously, so we could go a little further and to examine a new piece of code. Before

proceeding, return to sub_59143C signature:

▪ char *__userpurge sub_59143C@<eax>(int a1@<eax>, char *a2@<edx>, int *a3@<esi>, int a4, int

a5)

The fourth and fifth parameters (I will rename them to arg_4 and arg_5) aren’t being used. Furthermore, I

will also rename the first two arguments to ptr_dll and ptr_api_name respectively (names could be better).

This behavior using one or more fake arguments for a routine is a well-known resource used by

https://exploitreversing.com

18 | P a g e

obfuscators and protectors in general. About the name, they might be not precise, but we can update

them later just in case we need to do.

At the same way we did previously, it is necessary to re-type (Y hotkey) and rename (N hotkey) all possible

variables to get a reasonable result as shown in the next figure:

[Figure 18]: sub_59143C (second part)

Now, our point of interest is the line 239:

▪ api_hashed = api_hash_name ^ 0xE462D21C (previously api_hashed = v71 ^ 0xE462D21C)

https://exploitreversing.com

19 | P a g e

Clearly the API hash value, which is a representation of the API’s name, is being XOR’ed with a constant

that works as a XOR key. Actually, this behavior is common and similar to other malware families, and we

have to pay attention and consider this value when we will be trying to use any plugin to accelerate the API

hash resolving process.

Certainly, a question that many readers might be would be: “Do I have to follow this procedure of analysis

only to find the XOR key?”. No, you don’t.

One of the quickest (and certainly dirty) way to find the XOR key (if there is one) is by using the search

resource of IDA Pro to look for all XOR operations and, likely, if you find a repetitive XOR operation using

the same immediate value, so probably it is the XOR key that you are looking for.

Thus, to perform the search operation for XOR instructions, jump to the Assembly view (IDA View). From

there, go to Search → Text and type ‘ xor * ’ (of course, you can try a real regular expression) and you will

receive an output like the following one:

[Figure 19]: searching for XOR key

The same immediate value has been used over five places, so it is probably the XOR key: 0xE462D21C.

So far we identified that the code is using DLL/API hash resolving, but there are other pending questions

related to this specific point: what’s the algorithm used over this hashing operations? To find a possible

answer, it is time to focus our analysis on any location that is involved with the XOR key that we showed

above. For example, readers could try to examine the second one at 0x00590167, as shown below:

Once again, there is a series of routines being called, but sub_594FFC routine seems to be more interesting

because it is used and xor’ed against the XOR key. Of course, if readers have a spare time, so it would be

amazing to analyze the other routines too. Examining the sub_594FFC routine, we have:

[Figure 20]: Function involved with the found XOR key

https://exploitreversing.com

20 | P a g e

[Figure 21]: sub_594FFC routine

Apparently there is nothing here, but not so fast. Pay attention to the for loop on line 6, which is using two

DWORD’s and one routine sub_5950B8(). The first DWORD (dword_59D248) is referred by two pieces of

code and one of them is responsible for writing such double word. Readers can find both addresses by

using CTRL+X hotkey. Moving into sub_5950B8() we have:

At first, results do not seem to be so relevant, but we found constants being used and related to multiple

operations. Actually, it is really a great news because constants are valuable to identify cryptography

algorithms. Therefore, we need to examine what are these constants:

[Figure 22]: sub_5950B8 routine

https://exploitreversing.com

21 | P a g e

[Figure 23]: Crypto constants

Initially there is nothing really useful again, but pay attention to the last constant:

▪ 0EDB88320EDB88320EDB88320EDB88320

Let me show the same line again, but this time using colors:

▪ 0EDB88320 EDB88320 EDB88320 EDB88320

The same 4-bytes hexadecimal is repeated four times. Searching for this hexadecimal constant on the

Internet, readers are going to quickly confirm that it is related to CRC32 algorithm

(https://en.wikipedia.org/wiki/Cyclic_redundancy_check):

[Figure 24]: CRC32 constants (from Wikipedia)

Finally, we found the algorithm being used by the sample to generate all hash values that are used by the

malware to encode its API and DLL names. Therefore, until now, we could confirm the following facts:

▪ The malware is using API / DLL hashing.

▪ There is a XOR key being used in the hashing procedure: 0xE462D21C

▪ The algorithm being used to calculate the hash is CRC32.

Certainly, they won’t be the only obstacles that we will have to manage in our analysis.

The next point is to understand the strange objective of “int 3” (__debugbreak()), which is being used

over multiple places in the malware’s code. First, we have to pick up an example of pseudo code to

analyze and try to have a better comprehension about what is really happening:

https://en.wikipedia.org/wiki/Cyclic_redundancy_check

https://exploitreversing.com

22 | P a g e

[Figure 25]: Sub_593628 routine: pseudo code

Although we have not discussed any technique to resolve hashes (it will be done in next pages), we can do

a fast analysis about what is occurring in this figure:

▪ line 6: apparently a status variable is controlling the execution flow. Instructions from line 8 to line

11 will be only executed whether the condition is True. However, there is a detail: if readers check

the dword_59D228’s value in the .data section, it contains initially exactly the sane value used in

the comparison: 0xA33C83E5.

▪ line 8 and 9: the hash resolving routine (sub_593064) is being called. On line 8, a function pointer

is returned and stored into v1. In addition, the result of calling the hash resolving routine on line 9

is stored into dword_59D22C and not used at this time.

▪ line 10: the same status variable and value from line 6 are used one more time.

▪ line 11: the function pointer is used to invoke the function with 6 arguments.

▪ line 13: once again, the routine responsible for handling API hash resolving (sub_593064) is called

for the third time.

▪ lines 16 and 17: the __debugbreak() function is called.

Obviously, there is an evident anti-analysis trick here that was introduced by an obfuscator, but readers

should pay attention to one detail: on line 8, the resolved API’s address is returned, stored into v1 and

then called on line 11, when its result is stored into exactly the same variable dword_59D228. However,

the returned function pointer from call to sub_593064 is loaded into result and, apparently, it is not used

for anything else.

Additionally, the test using “if instruction” on line 14 is weird because whether the calling for sub_593064

is successful (and we can assume it is), so lines 16 and 17 wouldn’t be executed. Finally, both

_debugbreak() calls, which are “int 3”, are called and the resolved API (the function pointer) is returned

to the caller function, but it is not directly called as we saw with v1 on line 11.

Observing the Assembly of sub_593628 routine certainly will help readers to start to understand what

could be happening in this strange piece of code:

https://exploitreversing.com

23 | P a g e

[Figure 25]: Sub_413628 routine: Assembly code

 [Figure 26]: sub_593628 routine: Assembly code

https://exploitreversing.com

24 | P a g e

Clearly both “int 3” instructions shouldn’t be here. This is a well-known anti-analysis trick used to defeat

dynamic and static analysis, and I have seen it (or a variation) over other samples. During a possible

dynamic analysis, the “int 3” instruction will be interpreted as an exception (EXCEPTION_BREAKPOINT),

forcing us to skip it or even passing the exception to the designed exception handlers registered by system,

and it will cause delays to analysts to examine the sample. Nonetheless, it is not our concern here.

About the aspect of the static analysis, both calls for API name resolution from line 09 and 13 from Figure

25 (pseudo code) are not being really used, apparently. Anyway, we know that after a function’s call, its

result is returned (pushed) into EAX register. Additionally, analyzing the Figure 26, readers can see a kind

of pattern because soon after both “int 3” instructions, where there is a jump to a near location, which do

a quick restoration of non-volatile registers and return. This action seems cause a severe problem in the

disassembler because the block under loc_59365C is only executed if the instruction at 0x00593638 is true,

and inversion in the execution flow cause issues during the disassembling process. Regardless of the

commented side effect, remember that the pointer to the resolved function stored in eax. Therefore, what

is the trick?

In any other place around the code the malware is registering an exception handler to manage an

exception type as EXCEPTION_BREAKPOINT, which is related to _EXCEPTION_RECORD structure, and this

handler likely will be executing the function on the top of stack, which is exactly the same eax’s value that

was pushed to stack previously. At the end, the resolved API will be called and executed. Therefore, we can

assume one int 3 instruction together the exception handler produces an effect as call eax instruction.

To be able to find the exception-related code, it will be easier to handle the DLL and API resolution first

and, afterwards, returning and searching for the code. Of course, we could use just the Assembly code to

track such code if we wanted to, and it would take a bit longer.

About API hash resolving, we hold the following information so far:

▪ algorithm: crc32

▪ xor key: 0xE462D21C

▪ function associated with hash resolving is sub_59306C

In the other hand, we have the following pending tasks:

▪ finding where malware has registered the exception handler, and analyzing it to confirm our

assumptions.

▪ improving the pseudo code and, at the same time, managing a better solution to handle with both

int 3 instructions.

To handle hashing resolving, there are several possibilities and all of them are excellent solutions:

▪ Shellcode Hashes from flare-ida (Mandiant): https://github.com/mandiant/flare-

ida/blob/master/plugins/shellcode_hashes_search_plugin.py

▪ Apihashes IDA Pro plugin (from Igor Kuznetsov): https://github.com/KasperskyLab/Apihashes

▪ HashDb IDA Pro plugin (OALabs): https://github.com/OALabs/hashdb-ida

If readers pay attention to Figure 25, the routine involved with hashes is sub_593064, which accepts two

arguments, but we also found previously the sub_59306C routine that accepts five arguments and also

seems to be related to hash resolution.

https://github.com/mandiant/flare-ida/blob/master/plugins/shellcode_hashes_search_plugin.py
https://github.com/mandiant/flare-ida/blob/master/plugins/shellcode_hashes_search_plugin.py
https://github.com/KasperskyLab/Apihashes
https://github.com/OALabs/hashdb-ida

https://exploitreversing.com

25 | P a g e

Examining the cross-references (X hotkey) to sub_593064 routine, we found that there is a lot of

references to it:

[Figure 27]: sub_593064 routine: resolving hash

Wow! This routine is called 199 times! Now we can understand what is happening: this routine

(sub_593064) is another hash resolving routine, besides the sub_59306C routine (that one we mentioned

previously, which accepts five arguments), and both use the same internal routines.

https://exploitreversing.com

26 | P a g e

Therefore, we can adopt the following nomenclature to make things easier for us:

▪ sub_593064: ab_hash_resolving

▪ sub_59306C: ab_hash_resolving_internal

Most certainly, readers already used Shellcode Hashes from flare-ida project, but I am going to quickly

explain how to set up it and use it in our case:

1. Clone the flare-ida repository: https://github.com/mandiant/flare-ida. In my case, I did it under

C:\github directory.

2. Copy the plugin file (C:\github\flare-ida\plugins\shellcode_hashes_search_plugin.py) to IDA Pro’s

plugin directory, which in my case is: C:\Program Files\IDA Pro 8.2\plugins

3. Copy the entire flare folder (C:\github\flare-ida\python\flare) to IDA Pro’s Python folder

(C:\Program Files\IDA Pro 8.2\python\3).

4. Now we have to generate the hash database, so it is a matter of choice. Readers must choose which

DLLs will be used as source to generate the hash database. You can create a directory with all

chosen DLLs and generate a partial database, or include all DLLs from C:\Windows\System32

directory to generate a big database and, of course, much more complete than our partial one. I

have generated both databases:

a. ab_hashes_partial.db (60.960 KB – generated in a couple of minutes)

b. ab_hashes_full.db (596.688 KB – takes about 30 minutes to get finished)

[Figure 28]: Shellcode Hashes: generating the database

5. If readers don’t have a ready list of interesting DLLs, Hexacorn (https://twitter.com/Hexacorn)

recently authored an article and his list is good enough for handling most of the cases. The Adam’s

article is available on: https://www.hexacorn.com/blog/2022/12/03/using-make_sc_hash_db-py-

to-create-api-hashing-dbs/

6. Check whether the installed and default Python on Windows matches exactly with the version

being used by IDA Pro:

a. on Windows: python -V

https://github.com/mandiant/flare-ida
https://twitter.com/Hexacorn
https://www.hexacorn.com/blog/2022/12/03/using-make_sc_hash_db-py-to-create-api-hashing-dbs/
https://www.hexacorn.com/blog/2022/12/03/using-make_sc_hash_db-py-to-create-api-hashing-dbs/

https://exploitreversing.com

27 | P a g e

b. go to “C:\Program Files\IDA Pro 8.2” and run the idapyswitch.exe executable. Be sure of

picking up exactly the same version that it is the default one on Windows.

c. Open the IDA Pro, go to the Python command line and type the following command, which

should return the default Python version used by IDA Pro, and the same from Windows:

i. import sys

ii. sys.version

7. On IDA Pro, go to Edit → Plugins → Shellcode Hashes and pick up the generated database. A form

will be shown, and readers must pick up the algorithm (CRC32, as we found) and enter the XOR key

(0xE462D21C), as we also discovered:

[Figure 29]: Shellcode Hashes plugin

After running the plugin, we have the following result:

[Figure 30]: Shellcode Hashes: applied names

https://exploitreversing.com

28 | P a g e

The resulting is great and, as readers can see, all DLL and API names found by Shellcode Hashes plugin are

applied as comment. Readers shouldn’t forget that, to get to this point, we worked and analyzed the code

to find:

▪ hash algorithm

▪ XOR key

▪ hash resolving routine

Without having the hash algorithm and XOR key in our hands, so it would be impossible to use the plugin

to get the right result. In the other hand, the plugin also applies comments on Assembly code:

[Figure 31]: Shellcode Hashes: applied names on Assembly code

https://exploitreversing.com

29 | P a g e

There’s a small catch here: if readers will apply the full database hash, which was generated using

C:\Windows\System directory, eventually the name of DLL will be different from shown above because

such a function might be exported by more than one DLL.

Personally, I like Shellcode Hashes plugin because it is easy to work with it since you have done the

analysis correctly. Furthermore, it offers us good points:

▪ It’s excellent to be used with analysis of shellcodes (shellcode analysis will be a key topic covered in

next versions of this series – maybe in MAS 9 or MAS 10 – stay tuned!)

▪ It makes comments on pseudo and Assembly code.

▪ It has a quite extensive list of available hash algorithms, although Mandiant haven’t updated since

then, unfortunately.

▪ Keep information private without transmitting any information to other place on Internet.

The good plugin offered by Igor Kuznetsov (Apihashes: https://github.com/KasperskyLab/Apihashes) has a

similar principle to Shellcode Hashes, but I will not show it here. Readers can make tests with it and,

certainly, will get the same result obtained by other plugins.

The other plugin is HashDB plugin from OALabs, which can be cloned by executing git clone

https://github.com/OALabs/hashdb-ida. To get it working, copy hashdb.py to IDA’s plugin directory

(C:\Program Files\IDA Pro 8.2\plugins). Attention: as HashDB performs lookup on OALabs server, so you

should remember to keep Internet access in your environment.

There is more than one way to proceed. The steps to get hash resolution are:

a. Go to Edit → Plugins → HashDB

b. Pick the algorithm up: crc32

c. Enter the XOR key: 0xE462D21C

d. Click on OK button.

[Figure 32]: HashDB Settings

https://github.com/KasperskyLab/Apihashes
https://github.com/OALabs/hashdb-ida

https://exploitreversing.com

30 | P a g e

We are ready to go, but let me explain an alternative method to do this setup and with an additional

advantage. Once we already found places over the code with the XOR key (for example, sub_593064 →

sub_59306C → sub_59143C), we can set up the plugin by right clicking the XOR key and choosing HashDB

set XOR key option:

[Figure 33]: HashDB: setting XOR key

After getting this step done, right click on the hash and choose HashDB Hunt Algorithm (check the image

above). The advantage of this option is that HashDB will try to guess the algorithm being used

automatically. In other words, if you are lucky, there will not be necessary to analyze the code before

resolving hashes because the plugin will be able to detect the algorithm for you (CRC32, in this case). Don’t

forget to mark the algorithm once the Matched Algorithms form is presented!

[Figure 34]: HashDB: searching and select the algorithm

https://exploitreversing.com

31 | P a g e

Finally, we are ready to right-click on any hash, choose HashDB Lookup and click on Import:

[Figure 35]: HashDB: look up for hash

Imports might take few seconds and freeze the IDA Pro, but that is a normal behavior and let it to finish its

job. HashDB, like Shellcode Hashes from Mandiant, creates an enumeration containing all hashed

functions, as shown below:

[Figure 36]: HashDB creates an enumeration for APIs

We have the enumeration created by HashDB (hashdb_strings_crc32), which will be useful for us.

https://exploitreversing.com

32 | P a g e

Obviously, we have to do it for both hashes used in the routine. Now we can edit the routine signature

(sub_593064 – renamed to ab_hash_resolving) and change its two argument’s type to

hashdb_strings_crc32, as shown below:

[Figure 37]: Before changing the sub_593064 routine’s type

[Figure 38]: After changing the sub_593064 routine’s type

Now it’s enough to press F5 and the result will be much better:

[Figure 39]: After updating the pseudo code

There is a note here: I renamed v1 to RtlCreateHeap_0 and the result variable to RltAllocateHeap_0.

Actually, this code needs a supplemental change, but I am going to do it in the next pages after we analyze

the piece of code related to the exception handler.

Additionally, I always like to rename the subroutine’s name (sub_593628, in this case) to one of the API’s

name within routine (maybe the most important) or a name representing the entire goal of that routine

because a better name will provide us with a guideline to analyze other parts of code later.

From this point onward, the suggestion is to repeat the same procedure: F5 + HashDB Lookup (for APIs

coming from different DLLs) + renaming for all 199 routines that are calling hashdb_strings_crc32. Yes, it

takes a meaningful amount of time, but the final result provides us a much better indication and is going to

help us to find what we are looking for:

https://exploitreversing.com

33 | P a g e

[Figure 40]: All API hashes resolved, and wrapper routines renamed

As I mentioned in the last page, I used HashDB plugin to resolve hashes and, in this case, there is

something really interesting: eventual places where I couldn’t get a result through HashDB, I already had

answers from Shellcode Hashes plugin. Therefore, it has worked as a double-checking.

https://exploitreversing.com

34 | P a g e

Now we are able to return to one of pending problems. As I mentioned, the malware actor may have

registered an exception handler which manages exceptions of type EXCEPTION_BREAKPOINT, whose type

is related to an _EXCEPTION_RECORD structure. The expected goal is to force an exception, transfer the

execution flow to the registered exception handler and, at end, execute the address stored on the top of

the stack, which is exactly the same content of eax that holds the resolved API’s address and has been

pushed onto the stack.

A good starting point to search for this exception handler is at beginning of the DLL and, more specifically,

one the first lines of DllRegisterServer function. as shown below:

[Figure 41]: DllRegisterServer() function

https://exploitreversing.com

35 | P a g e

Indeed, there is a list of clues that we are close to our target because we can see a declaration of an

instance of _EXCEPTION_REGISTRATION_RECORD structure (ExceptionList) on line 6. Also, the code is

retrieving the current ExceptionList from the TEB (Thread Environment Block) on line 10 and storing into

the declared ExceptionList variable. Readers remember that the first members of _TEB structure is given

by the following:

[Figure 42]: _TEB structure: first fields

Readers can get the same structure from IDA Pro: SHIFT+F9 (Structures View) → Insert → Add standard

structure → CTRL+F → _TEB, just in case the _TEB is not already added.

The first argument of _TEB is a member of type _NT_TIB (TIB: Thread Information Block), which has the

following structure:

[Figure 43]: _NT_TIB structure

Although readers are not able to see the exact type of ExceptionList member as well as other members in

the image above, you can retrieve the full structure definition by going to Local Types tab (SHIFT+F1),

searching the _NT_TIB and requesting to edit it (CTRL+E). The same information can be retrieved from

https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/_NT_TIB.

https://www.vergiliusproject.com/kernels/x64/Windows%2011/22H2%20(2022%20Update)/_NT_TIB

https://exploitreversing.com

36 | P a g e

I prefer fetching structure definitions from the IDA Pro always that it is possible, as shown below:

[Figure 44]: _NT_TIB structure with type information

Following the same procedure, we learn that the _EXCEPTION_REGISTRATION_RECORD structure has the

definition below:

[Figure 45]: _EXCEPTION_REGISTRATION_RECORD structure

Therefore, the _PEB → _TEB → _NT_TIB structure stores a member that is a pointer to a list of

_EXCEPTION_REGISTRATION_RECORD structures (linked by the Next pointer), which holds a field named

Handler. In other words, this Handler member (PEXCEPTION_ROUTINE type) represents an exception

routine (actually, the _EXCEPTION_RECORD), which is linked to other _EXCEPTION_RECORD structures

through its first field, as follows:

[Figure 46]: EXCEPTION_ROUTINE type

[Figure 47]: _EXCEPTION_RECORD structure

https://exploitreversing.com

37 | P a g e

Returning to DllRegisterServer routine, go into sub_5930E8 and the following function will be presented:

[Figure 48]: sub_5930E8 routine

Before we proceed, there is a small detail to comment. One pages 11 and 12, we discussed about a second

routine that also is responsible for resolving hashes and that accepts five arguments. Furthermore, this

routine is referred 59 times. Certainly, we can apply the same approach to improve and solve the API

hashing issues. As readers can see on Figure 48, the Shellcode Hashes plugin from Mandiant has already

solved, but we haven’t done the same with HashDB. If readers to analyze the sub_59306C → sub_59143C

routine, you will learn that the XOR key is exactly the same (0xE462D21C).

Therefore, we must change the sub_59306C signature from:

▪ char *__userpurge sub_59306C@<eax>(int@<eax>, char *@<edx>, int *@<esi>, int, int)

To:

▪ char *__userpurge sub_59306C@<eax>(hashdb_strings_crc32@<eax>, hashdb_strings_crc32

@<edx>, int *@<esi>, hashdb_strings_crc32, hashdb_strings_crc32)

The same sub_59306C routine is now present as:

[Figure 49]: sub_5930E8 routine: after hashing resolving with HashDB

https://exploitreversing.com

38 | P a g e

We have found the RtlRemoveVectoredExceptionHandler routine, which it is responsible for unregistering

a vectored exception handler, so it is much likely that we are close to find the

RtlAddVectoredContinueHandler routine. If readers perform the same approach from sub_593064

routine that we did on Figure 40 to this second API hashing routine (sub_59306C routine – renamed as

ab_hash_resolving_2), resolving each one of the references using HashDB plugin and renaming each

respective parent function, the answer will come up instantly:

[Figure 50]: sub_59306C routine (renamed as ab_hash_resolving_2) references

https://exploitreversing.com

39 | P a g e

Returning to DllRegisterServer routine for the third time, we realize that RtlVectorExceptionHandler was

already there:

[Figure 51]: DllRegisterServer routine, after resolving API hashes.

The RtlAddVectoredContinueHandler routine has the following prototype (check it up on:

https://github.com/winsiderss/systeminformer/blob/master/phnt/include/ntrtl.h):

RtlAddVectoredContinueHandler(
 In ULONG First,
 In PVECTORED_EXCEPTION_HANDLER Handler
);

https://github.com/winsiderss/systeminformer/blob/master/phnt/include/ntrtl.h

https://exploitreversing.com

40 | P a g e

Although almost certainly readers already know about this topic, let me write few words about the

exceptions. So far, we are referring to Structure Exception Handlers (SEH) as in malware analysis as in

exploit development. Do you remember about old stack exploitation techniques to avoid cookies through

SEH (pop pop ret)? The fundamental idea of SEH is based on exception and termination handling, and it is

highly likely that readers already have seen C constructions __try + __finally or __try + __except. As same

way, try + catch constructions in C++ should be common to readers. Part of the explanation mentioned on

pages 34 and 35 has SEH as reference.

Nonetheless, Windows provides a supplemental exception mechanism named Vectored Exception

Handling (VEH), which is a sort of extension to structured exception handling (SEH) and works together

with SEH. VEH allows an application to register a function (callback function) to watch or even handling

exceptions from a thread. When the exception happens, so this callback function triggers a notification and

send it to the application. As a rule, VEH handlers are called before SEH handlers, but they are called in the

order that they are added unless you specify a specific order. These VEH handlers are registered by calling

AddVectoredExceptionHandler():

[Figure 52]: AddVectoredExceptionHandler()

The most valuable information here is the Handler, which is a pointer to a callback function, whose

respective type is PVECTORED_EXCEPTION_HANDLER. The callback has the following prototype:

[Figure 53]: PvectoredExceptionHandler callback function

The ExceptionInfo parameter is a pointer to EXCEPTION_POINTERS structure, which receives the

exception record, and the EXCEPTION_POINTERS structure is defined as:

[Figure 54]: _EXCEPTION_POINTERS structure

As we can see above, there is a pointer (ExceptionRecord) to EXCEPTION_RECORD structure and another

pointer (ContextRecord) to CONTEXT structure. The EXCEPTION_RECORD structure describes an exception

that is independent of the machine, and the CONTEXT structure holds a series of information bound to

processor’s registers, so its composition changes from Intel x64 processor to ARM64 processors, for

example.

https://exploitreversing.com

41 | P a g e

As we already showed the EXCEPTION_RECORD structure (page 35), so maybe it is relevant to show parts

of the _CONTEXT structure (defined in WinNT.h):

[Figure 55]: _CONTEXT structure: first lines

[Figure 56]: _CONTEXT structure: last lines

Now that we quickly refreshed few facts about exceptions, it is time to return to our code in

DllRegisterServer(), which as we saw in Figure 51. As we learned, AddVectoredExceptionHandler()

registers a vectored exception handler that, actually, is a callback method.

However, the malware is not using AddVectoredExceptionHandler(), but

RtlAddVectoredExceptionHandler() that, fortunately, has identical arguments (check it on:

https://processhacker.sourceforge.io/doc/ntrtl_8h.html#aa9f0aa2c4497322dc3c16e509967baea).

The RtlAddVectoredExceptionHandler() returns a pointer to the exception handlers, but you should pay

attention to the fact that is not the real RtlAddVectoredExceptionHandler(), but a wrapper to it. Thus,

moving into RtlAddVectoredExceptionHandler(), we have:

https://processhacker.sourceforge.io/doc/ntrtl_8h.html#aa9f0aa2c4497322dc3c16e509967baea

https://exploitreversing.com

42 | P a g e

[Figure 57]: ab_RtlAddVectoredExceptionHandler routine

This routine is pretty identical to other ones. Checking its respective Assembly code and also sub_593138

routine, we have:

[Figure 58]: ab_RtlAddVectoredExceptionHandler routine: Assembly code

RtlAddVectoredExceptionHandle

r

https://exploitreversing.com

43 | P a g e

The Figure 58 shows us that the sub_593138 (Figure 57, line 20) is actually calling

RtlAddVectoredExceptionHandler(), which was just resolved in the previous assembly instruction (Figure

20, line 14). At this point, the handler is registered and ready to be called.

Therefore, the malware forces the handler to be executed as an exception handler. Once the handler is

called, it will do its job and, after having finished, it will execute a return to the next value on the top of

the stack, which is exactly the eax’s value (returned by ab_hash_resolving()) and that is the resolved API

address. In this case, the code is using two int 3 instructions (0xCC,0xCC) as equivalent to call eax

(0xFF,0xD0). Just in case readers want to check these opcodes, a valuable resource is the online assembler

and disassembler on: https://shell-storm.org/online/Online-Assembler-and-Disassembler/.

[Figure 59]: sub_593698 routine, and the synchronized HexView that shows two CC opcodes.

The next suggested step is to make a backup of the IDA .idb file and the unpacked sample to avoid

corrupting them. I will be using, only as reference, the sub_593698 routine (renamed to ab_memset):

[Figure 60]: sub_593698 routine, which will be used as reference for changes

https://shell-storm.org/online/Online-Assembler-and-Disassembler/

https://exploitreversing.com

44 | P a g e

To confirm whether our theory that the two int 3 instructions (\xCC\xCC) is equivalent to call eax

(\xFF\xD0), we are alter the hexadecimal directly in the Hex View tab. To do it, click on Hex View tab,

press F2 hotkey and make the change:

[Figure 61]: sub_593698 routine: hexadecimal bytes changed

Press F2 hotkey again to commit changes and we will see the following content:

[Figure 62]: sub_593698 routine: after changes

We have gotten a much better result because:

▪ there are not both __debugbreak() instructions anymore.

▪ we can see the memset() function being explicitly called with its three parameters, which it was

not possible previously.

▪ the IF condition has been completely fixed and we can see what’s really happening.

▪ the function pointer to memset appeared and confirms that the function accepts three arguments.

▪ the Assembly view (IDA View-A) has been fixed too and there isn’t any analysis issue (red line)

marked on the code.

To save space here, I will show only one more example with effects from this change to illustrate that we

will have a much clearer pseudo and Assembly code after doing this manipulation over the code.

https://exploitreversing.com

45 | P a g e

 [Figure 63]: sub_593628 routine

After we have followed the same procedure and applied changes, we got the following result:

[Figure 64]: sub_593628 routine: after changes

Once again, the final result is clearer, and we can see both RtlCreateHeap_0() and RtlAllocateHeap_0()

being invoked with all arguments. Another beneficial effect of this change is that we also can perform a

supplemental marking-up on the code due to fact that new lines were revealed to us.

The next step is composed by the following tasks:

▪ evaluating the number of occurrences of this hexadecimal sequence exist on the idb file.

▪ performing replacements on the IDA .idb file or directly on the unpacked binary file.

The IDA Pro provides an efficient and effortless way to search for binaries sequences and text, which will

be especially useful for us to accomplish the first task.

Clicking on any line on IDA View-A, press ALT+B hotkey to activate the Binary search form. In the String

field, type CC CC and make sure that Hex format is selected as well as Find all occurrences too, and press

OK:

https://exploitreversing.com

46 | P a g e

[Figure 65]: Partial results from the search for \xCC\xCC sequence

This result shows us that:

▪ Most of occurrences are exactly the same trick used to make our reversing task more complex.

▪ Not all occurrences are related to Trap to Debugger, and some of them are related to hexadecimal

data.

▪ IDA Pro found 132 occurrences, and 126 hits are suitable for our context.

https://exploitreversing.com

47 | P a g e

Once we have decided to write a script, we should be careful in not change all occurrences because few of

them are not related to “trap to debugger” trick. In the other side, as these 0xCC sequences are used as

data or even as stack offset, so this few inappropriate changes would be really little impacting and would

not cause any visible effect on the reversing task. Anyway, we will avoid doing it.

Another possible decision would be writing a pure Python script to change the sequence \xCC\xCC to

\xFF\D0 inside the binary and certainly it would work, but we would have the same side effect of changing

data (instead of instructions), and we also would be changing the binary that is something I do not like.

Eventually, I would have to re-analyze (and marking up) the new binary.

I have chosen writing a script using IDA Python/IDC and change only the IDA Pro .idb file to perform all

necessary operations. Therefore, go to File → Script Command… and write the following script:

[Figure 66]: IDA Python/IDC script for patching \xCC bytes

The script itself is quite simple, but there are few details that I would like to comment:

▪ If it is necessary, you can also import ida_funcs and idaapi modules explicitly.

▪ I used both hash resolving functions as reference to find the name of wrapper functions where

they are being called and, having the name and start address of each wrapper function, the script

lists all Assembly instructions for each wrapper function and compare with them with int 3

instruction. This was the motivation for creating an array of function names on line 5, and new

functions could be added to this list if it were necessary.

▪ The final goal is to replace \xCC\xCC (int 3; int 3) by \xFF\xD0 (call eax). Therefore, I didn’t want to

replace both \xCC byte for the same provided byte, but the first \xCC byte should be replaced by

https://exploitreversing.com

48 | P a g e

\xFF and the second \xCC byte should be replaced by \xD0. That is the reason for using the break

instruction on line 20. Indeed, the goal was searching for the first int 3 instruction, applying the first

patch over the first \xCC byte and, afterwards, incrementing ea in 1 to get the next int 3 address,

and apply the second patch over it too.

▪ I could have written a script to ensure that there would be two subsequent int 3 instructions

before applying the patch, but we already had verified previously that there was not any int 3 out

of this context.

▪ On line 10, the function idc.get_name_ea_simple() retrieves the address of a function given by the

target_functions array. Information about the function available on: https://www.hex-

rays.com/products/ida/support/idadoc/255.shtml.

▪ On line 11, the CodeRefsTo() gets all references to the the provided hash function and, as we

already had learned previously, there are many ones. Information about the function available on:

https://www.hex-

rays.com/products/ida/support/idapython_docs/idautils.html#idautils.CodeRefsTo

▪ On line 12, get_func() retrieves the reference (address) to the function object (structure), given

the address of the function. Further information on: https://www.hex-

rays.com/products/ida/support/idapython_docs/ida_funcs.html#ida_funcs.get_func.

▪ On line 13, the script checks whether the reference (address) is valid (not null). Invalid references

are not a common occurrence, but it might happen, and, without this line, the script might stop.

▪ On line 14, Heads() gets a list of heads (instructions or data items) given the start and end

addresses. More information available on: https://www.hex-

rays.com/products/ida/support/idapython_docs/idautils.html#idautils.Heads.

▪ On line 15, the insn_t constructor, from insn_t class, is called and returns an object of this class.

Information on: https://www.hex-rays.com/products/ida/support/sdkdoc/classinsn__t.html.

▪ On line 16, the decode_insn() function, which interprets the specified address as an instruction

and fills the insn_t structure provided as first parameter. The return is the length of the instruction

or zero. Further information on: https://www.hex-

rays.com/products/ida/support/sdkdoc/ua_8hpp.html#af83aad26f4b3e39e7fbda441100f15cf.

▪ On line 17, the itype field (member of insn_t class), which contains the internal code of the

instruction, is used to check whether the provided instruction is an int 3 instruction. In additional,

readers might be interested in the fact that it is possible to verify any instruction using ida_allins

module. Further information on https://hex-

rays.com/products/ida/support/idapython_docs/ida_allins.html#ida_allins.NN_int3.

https://www.hex-rays.com/products/ida/support/idadoc/255.shtml
https://www.hex-rays.com/products/ida/support/idadoc/255.shtml
https://www.hex-rays.com/products/ida/support/idapython_docs/idautils.html#idautils.CodeRefsTo
https://www.hex-rays.com/products/ida/support/idapython_docs/idautils.html#idautils.CodeRefsTo
https://www.hex-rays.com/products/ida/support/idapython_docs/ida_funcs.html#ida_funcs.get_func
https://www.hex-rays.com/products/ida/support/idapython_docs/ida_funcs.html#ida_funcs.get_func
https://www.hex-rays.com/products/ida/support/idapython_docs/idautils.html#idautils.Heads
https://www.hex-rays.com/products/ida/support/idapython_docs/idautils.html#idautils.Heads
https://www.hex-rays.com/products/ida/support/sdkdoc/classinsn__t.html
https://www.hex-rays.com/products/ida/support/sdkdoc/ua_8hpp.html#af83aad26f4b3e39e7fbda441100f15cf
https://www.hex-rays.com/products/ida/support/sdkdoc/ua_8hpp.html#af83aad26f4b3e39e7fbda441100f15cf
https://hex-rays.com/products/ida/support/idapython_docs/ida_allins.html#ida_allins.NN_int3
https://hex-rays.com/products/ida/support/idapython_docs/ida_allins.html#ida_allins.NN_int3

https://exploitreversing.com

49 | P a g e

▪ One lines 18 and 19, once we are sure that we found an int 3 instruction, so we can patch its

respective opcode using our own opcode Please, pay attention to the fact that I used ea variable as

argument for the first patch_byte() call on the line 18, but I used ea + 1 as argument for the

second patch_byte() call to fix the second int 3 instruction. Information about the patch_byte

function can be found on: https://www.hex-rays.com/products/ida/support/idadoc/713.shtml

▪ The break instruction on line 20 is a little trick: once the script finds the first int 3 instruction, it

leaves the interaction within the provided function, and starts to list instructions of the next one.

I have run the script once and, using the IDA Pro binary mechanism (Search → Sequence of Bytes – or

ALT+B), I got the following result:

[Figure 67]: Results for new \xCC search after running the script

The fourth result indicates a potential issue with function because the name is not appearing. Jumping to

there, we can easily notice that there isn’t any indication for the end of function, as shown below:

[Figure 68]: Results of searching for \xCC byte after running the script

Fortunately, we can fix this issue easily by putting the cursor on its first address and pressing E hotkey,

which will solve the problem. Now, running the script a second time and repeating the search, we have:

https://www.hex-rays.com/products/ida/support/idadoc/713.shtml

https://exploitreversing.com

50 | P a g e

[Figure 69]: Results of searching for \xCC byte after running the script for the second time.

That’s perfect! We got replacing all int 3 instruction pairs in the .idb database by our bytes representing

call eax, but without changing any of data information which also was in the .text section. Additionally, we

didn’t need to create a new patched binary.

Once again, we can check the pseudo code of any of routines that contained int 3; int 3 trick to be sure

that they are correct and fortunately we realized there is a better and cleaner code, as shown below:

[Figure 70]: sub_59494C routine: general aspect after running the script

Now, we finally have a bit better binary, which we can complete the markup process, and to be able to

interpret new findings and pieces of code.

There are other aspects and portions of the Dridex code to be analyzed and this is a time-consuming task,

obviously. Furthermore, we need to establish and focus on more objective goals because we have enough

functions to spend several days in trying to analyze them.

Basically, we don’t have vital information until now: strings and IP addresses used to connect to command-

and-control channel (C2) from malware’s authors.

Anyway, I have adopted the same guideline of past article in visualizing .data and .rdata sections (CTRL+S

hotkey) and, from there, finding important routines manipulating and decrypting these data blocks.

https://exploitreversing.com

51 | P a g e

[Figure 71]: Binary’s sections

Choosing .rdata section and jumping to it, we have the following content:

[Figure 72]: Start of .rdata section

As readers can realize, there one reference soon at the beginning of the section. Checking the reference (X

hotkey) and jumping to it, we have:

https://exploitreversing.com

52 | P a g e

[Figure 73]: sub_581000 routine

I’ve already renamed few data references and variables and, much more important, I renamed the

sub_59214C routine to ab_w_rc4_0 because within it there is a call instruction to the real RC 4 routine:

[Figure 74]: sub_59214C routine renamed to ab_w_rc4_0

https://exploitreversing.com

53 | P a g e

The routine ab_rc4 is the new name of sub_594B38, which clearly it’s a RC 4 routine (we learned about

RC4 in past articles of this series), and it is partially shown below:

[Figure 75]: sub_594B38 rename to ab_rc4

Returning to sub_59214C (ab_w_rc4_0), from Figure 74, readers might be wondering how I got such

conclusions, but they are quite easy to understand the decisions. First, look at lines 8 and 17 (Figure 74), as

shown below:

▪ sub_58F37C(ptr_raw_key, data_to_be_decrypted, 0x30);

▪ ab_rc4(key, 48, data_to_be_decrypted + 0x30, 0x7FFFFFFF, 0, sub_59341C, v9);

There are few points:

▪ data_to_be_decrypted argument is the second argument from sub_59214C (ab_w_rc4_0) and it

comes from the call on line 31 from sub_581000 (Figure 73).

https://exploitreversing.com

54 | P a g e

▪ I know that the first 0x30 bytes (48 bytes) is the decryption key because the second argument of

the call instruction for ab_rc4 routine (line 17, Figure 74) is data_to_be_decrypted+0x30.

Additionally, on line 8, the sub_58DF4C routine using the same block of data

(data_to_be_decrypted parameter), and the third argument is exactly the same 0x30. If readers

examine the sub_58F37C routine, you will confirm that it is a wrapper to memcpy() function. Thus,

the first argument of sub_58F37C routine is a pointer to the key, which I renamed to ptr_raw_key.

▪ This pointer is used as argument of ab_reverse_bytes routine (sub_594928), which readers can

check its content and confirm that it takes the passed array of bytes and simply invert them:

[Figure 76]: sub_594928

▪ As a reference has been passed to the sub_594928 routine, so the result is also the same content

of ptr_raw_key, which it was already inverted.

Examining references (X hotkey) to ab_w_rc4_0 routine (sub_59214C), we realize it called seven times:

[Figure 77]: references to ab_w_rc4_0 (sub_59214C)

https://exploitreversing.com

55 | P a g e

However, there is a further detail. The ab_rc4 routine (sub_594B38), which is the real RC4 function (and

not a wrapper) is called 9 times (once again, check it using X hotkey) and one of them is by our ab_w_rc4

wrapper function (sub_59214C), as shown below:

[Figure 78]: references to ab_rc4 (sub_594B38)

Therefore, we know that this malware sample is massively using RC4 algorithm to encrypt its data blocks

(hopefully strings and/or IP addresses), and in all cases using the same scheme:

▪ [48 bytes key] [encrypted data]

We should remember that key was originally inverted, so we have to fix it before using it.

Eventually, there can be new layers of obfuscation and encryption, but for now we don’t have any further

clue. That’s what we know so far:

▪ RC4 is being used by other routines, and readers can get information about the RC4 algorithm from

https://en.wikipedia.org/wiki/RC4.

▪ Relevant encrypted information is stored on .rdata section.

▪ The information is stored and organized as: [48 bytes key] [encrypted data]

▪ The key is stored with its bytes inverted.

▪ We need to extract the information, and separate it between key and data.

▪ It is necessary to invert the extracted key before using it.

▪ We have to use the key to decrypt the encrypted information using RC4 routine from a library.

We will be focused on strings and eventual IP addresses that might appear during of the process. If we find

other type of information (configuration files, binaries, shellcode and so on), we will only save them to an

eventual and future analysis to not make this article bigger than it is.

There are two ways to proceed:

▪ Writing a pure Python script.

▪ Writing an IDA Python/IDC script.

As I have already used IDA Python/IDC previously, I will write pure Python scripts (using Jupyter notebook

as environment), which makes easier to readers to adapt it and debug any issues.

https://en.wikipedia.org/wiki/RC4

https://exploitreversing.com

56 | P a g e

Anyway, I will be showing a first version of script, but it is not the final one. Why? Because the presented

results will demand further attention of us, but I always like to show the true order of issues during the

analysis and reproduce what I did to move forward. I have commented the script for helping the reader,

but I still need to explain decisions of few lines:

https://exploitreversing.com

57 | P a g e

[Figure 79]: first version of the decryption script

As readers can realize, the script is basically composed by two parts, where the first one is a series of

support routines, and the second part is the main routine. Based on collected references to ab_w_rc4_0

routine, I searched for such referred addresses in the .rdata section that points to encrypted data block

and created an array with all these addresses. For while that is an appropriate solution, but we will change

it soon. There are other references to encrypted data blocks, but I am not concerned with it. The output of

the script is shown in the next page:

https://exploitreversing.com

58 | P a g e

https://exploitreversing.com

59 | P a g e

https://exploitreversing.com

60 | P a g e

[Figure 80]: output from the first version of the script

As readers can realize, the first three outputs are in clear text, but the next ones are not. Of course, these

output are encoded in Base 64 and our first measure would be decode it, but there is another issue to be

handled, which I didn’t show you yet.

There is an important detail to comment: one lines 29 to 32, I defined a routine named print_data(). This

routine was necessary because without including it we would see the following output for the second

address of the list within the main() routine:

[Figure 81]: output for the second address without any manipulation.

We see that:

▪ The output is an array of bytes.

▪ There is a \x00 (blue) prefixing each letter (I only marked once to not pollute the image)

▪ There is a \x00\x00 (red) separating each word

Thus, on lines 30, 31 and 32 we:

▪ separated words

▪ removed all \x00 prefixes.

▪ converted to string.

Although readers might not remember, we already saw similar manipulations (not equal) in the third

article of this series (MAS 3), which showed details about the Emotet reversing. About the Base64 strings,

we can decode them now, but before doing it, we have to pick up one of address of the array (for example,

the last one), and examine code around the call to ab_w_rc4_0 routine (sub_59214C), which is using such

address:

https://exploitreversing.com

61 | P a g e

[Figure 82]: piece of code within sub_589088

The ab_w_rc4_0 (sub_59214C) routine is called on line 132. On the next line the sub_58F6C0() is called,

and part of its content is the following:

[Figure 83]: part of sub_58F6C0 routine

https://exploitreversing.com

62 | P a g e

As we already had discovered by inference of decrypted strings, this sub_59214C routine handle the

Base64 decoding and there is a well-known library to decode such strings, so it is not a problem.

Returning to sub_589088 routine, on line 139 there is a call to sub_5878B4 routine. Moving inside this

routine, we have:

[Figure 84]: part of sub_5878B4 subroutine

This routine doesn’t provide us many clues about what is really happening, but there is a subtle evidence

that readers can use: the constant 0x7D00 on line 31.

This is a well-known constant used by APLib decompression method and, even readers didn’t know about,

a quick search on Google would confirm that my statement is correct.

Now we understand the sequence of events:

▪ encrypted code → RC4 → Base64 → APLib

https://exploitreversing.com

63 | P a g e

There are two interesting projects that are enabled to handle APLib code:

▪ https://github.com/CERT-Polska/malduck (by CERT Poland)

▪ https://github.com/snemes/aplib (by Sandor Nemes)

Therefore, we must change the first version of this script to manage the following points:

▪ Decoding Base64 (when necessary)

▪ Decompressing the result from Base64 using APLib (when necessary)

I prefer using malduck package because it offers support to a series of algorithms such as AES, Blowfish,

Camellia, ChaCha20, DES/DES3, Salsa20, Serpent, Rabbit, RC4, XOR, RSA, aPLib, gzip, lznt1, SHA1, MD5,

SHA256, and other useful features.

To install malduck, run: pip install malduck

The next version of our script covers three possibilities after decrypting data blocks using RC4 algorithm:

plain text information, decoded Base64 information, and decoded Base64 followed by decompressed

aPLib information. I am going to comment about few lines to make sure that everything is clear to readers:

https://github.com/CERT-Polska/malduck
https://github.com/snemes/aplib

https://exploitreversing.com

64 | P a g e

https://exploitreversing.com

65 | P a g e

[Figure 85]: Second version of the decryption and decoding script

https://exploitreversing.com

66 | P a g e

https://exploitreversing.com

67 | P a g e

https://exploitreversing.com

68 | P a g e

[Figure 86]: Output from the second version of the decryption and decoding script

The script presents relevant changes when compared to the previous version, but basically these new lines

of code continue our work from where we stopped by decoding Base64 data and, mainly, decompressing

blocks of aPLib compressed data.

https://exploitreversing.com

69 | P a g e

Therefore, necessary comments follow below:

▪ I kept commented code from lines 66 to 68 just in case readers need to check the extracted key in

bytes and hexadecimal.

▪ From line 74 to 86, I structured the script to take in account three scenarios, as already

commented: plain text information, decoded Base64 data, and decode Base64 data followed by

decompressed aPLib data.

▪ On line 75, the script decodes the Base64 data that comes from the RC4 decryption.

▪ On line 80, I kept commented print instruction to show the block of data after having executed the

aPLib decompression.

▪ The compressed aPLib data has the following format: [uncompressed data size] [compressed

data]. It is not only valid in this malware sample, but other families using aPLib present the same

pattern.

▪ On lines 78 and 79, I extracted the size and uncompressed data into two different variables,

data_len and data_corpus, respectively. The used aplib() function comes from malduck package.

▪ On the main() routine, I separated addresses in three different lists (lines 10 to 15) according to

the respective scenario.

▪ The script saves the decompressed aPLib data into different files on disk. To avoid issues, a quick

checking is performed before performing each write operation to the file system (lines 26 to 29).

▪ As I already had mentioned previously, I will not analyze any of four dumped files, but if readers

have interest in doing it, there might be a shellcode there. ;)

 As a confirmation of fact that the first four bytes of the compressed aPLib data are really the size of the

uncompressed aPLib data, the output of a file listing after extraction has finished follows below:

[Figure 87]: List of saved uncompressed files

This output confirms exactly what has been presented as output by our script in Figure 86.

The last goal is to retrieve the C2 IP address list used by this sample. Initially, readers might consider it

would be a painful step , similar to other malware families that we already learned in this series, but you

will realize that this is not the case, fortunately.

A good step for finding a possible list of IP addresses is by starting analysis from functions related to

Internet and, as we saw when we managed API hash resolution, there are good candidates. Using one of

these network related APIs, we can find the caller routine and, from there, getting close our objective.

https://exploitreversing.com

70 | P a g e

The sub_584AC0 routine is an interesting initial point:

[Figure 88]: sub_584AC0 routine: partial listing

As shown above, I already had renamed few routines while I managed API hash resolving issues (check

Figure 40), so it is clear that this sub_584AC0 routine is invoking routines related to Internet such as

ab_InternetOpenW, ab_Internet_W, ab_Internet_1 and ab_Internet_2.

On line 11 I initially renamed the sub_585708 to ab_handling_data_3 because I didn’t want spend time

analyzing it at that moment, but now it gets my attention due the fact that sub_584AC0 routine invokes

other routines that are associated to the Internet communication, and we know that these routines will

need IP addresses, which will need to be retrieved from somewhere.

Moving inside the ab_handling_data_3 routine, we have the following:

https://exploitreversing.com

71 | P a g e

[Figure 89]: sub_585708 routine

Apparently there isn’t anything really useful here, but there are clues:

▪ On line 28, there is an arithmetic operation involving an address (named ab_encoded_data_3).

▪ At the same line 28, there is a different multiplication operation: 6 * v1

▪ On line 36, another arithmetic operation is explicit: [address + offset].

▪ References as: [ptr_var + 4]

▪ The same address reference being used twice: &byte_59D020 + 2 and &byte_59D020 + 0xB.

https://exploitreversing.com

72 | P a g e

The content of ab_encoded_data_3 follows:

[Figure 90]: first bytes from .data section

Observing the code in Figure 89 and matching data being referenced on Figure 90, many points become

clear and, eventually, they help us to conduct short renaming task on variables from sub_585708.

https://exploitreversing.com

73 | P a g e

Readers should realize that:

▪ the address 0x0059D020 (byte_59D020) is used as reference on the code.

▪ one line 23, *(&byte_59D020 + 0xB) take us to the content stored at 0x0059D02B, which seems to

be the number of IP addresses (0x4) being contacted by the malware. This conclusion is also

enforced by the condition used by while instruction on line 36 (v1 < *(byte_59D020 + 0xB)) .

▪ The address 0x59D024 stores the botnet id (22206).

▪ one line 28, &ab _encode_data_3 + 6 * v1 is clearly passing through each IP:port combination.

▪ As there are four IP:port combinations in a supposed C2 list, and each one takes 6 bytes, so from

0x0059D02C address (ab_encode_data_3) the next 24 bytes represent all four combinations.

The sub_585708 routine containing few renamed variables (and incomplete yet) follows below:

[Figure 91]: sub_585708 routine with few comments

https://exploitreversing.com

74 | P a g e

Based on conclusions so far, I wrote a Python script to extract the botnet and IP:port combinations:

https://exploitreversing.com

75 | P a g e

[Figure 92]: script to extract botnet, and C2 IP addresses

Comparing this output above against Triage’s output (Figure 2) we have a perfect match!

8. Conclusion

This article presented new challenges when compared to previous articles of this series, but hopefully

readers have learned and enjoyed the reading. Recently a professional (Twitter: @bushuo12) translated

the three first articles of this series to Chinese language if you are interested in reading them:

▪ (MAS): Article 1 -- https://www.yuque.com/docs/share/619f03dc-1bc9-42f7-828e-fc17d82786e7

▪ (MAS) : Article 2 -- https://www.yuque.com/docs/share/d16efbd6-e2e6-4325-9b9e-23c613bd2280

▪ (MAS) : Article 3 -- https://www.yuque.com/docs/share/7dca2583-8456-4ca5-8862-0524fc6faaf9

Just in case you want to stay connected:

▪ Twitter: @ale_sp_brazil

▪ Blog: https://exploitreversing.com

Keep reversing and I see you at next time!

Alexandre Borges

https://www.yuque.com/docs/share/619f03dc-1bc9-42f7-828e-fc17d82786e7
https://www.yuque.com/docs/share/d16efbd6-e2e6-4325-9b9e-23c613bd2280
https://www.yuque.com/docs/share/7dca2583-8456-4ca5-8862-0524fc6faaf9
https://exploitreversing.com/

